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Abstract
Integrating, learning from, and predicting using vast datasets from various scales, platforms, and species is crucial for advanc-
ing crop improvement through breeding. Artificial intelligence (AI) is a broad category of methods, many of which have been 
used in breeding for decades. Recent years have seen an explosion of new AI tools (or old ones at new scales), with exciting 
applications, both demonstrated and potential, to improve or maybe even revolutionize plant breeding! Example use cases 
and data types included data mining, phenotyping, monitoring, genetics, multi-omics, environment, management practices, 
cross-species inference, sustainability, economics, and many others. Improvements in these areas could increase predictive 
accuracy for plant traits, thereby expediting breeding cycles and optimizing resource management. Aside from improving 
predictions, AI methods can potentially enhance biological inferences and enable more informed approaches to areas like 
gene discovery, gene editing, and transformation. At the same time, AI is not going to solve every breeding challenge, and 
studies so far have shown mixed results depending on the application, dataset, and other factors. AI continues to transform 
plant breeding, yet its full potential remains unclear, with many possibilities still to be realized. This review explores the 
transformative potential of AI in plant breeding with a particular focus on its ability to integrate the many diverse streams of 
data involved. Success in this would open opportunities to improve crop resilience, yield, and sustainability, thus supporting 
global food security and inspiring the next generation of plant breeding technologies.

Introduction

Integrating vast amounts of data from various scales, plat-
forms, and species is crucial for advancing crop improve-
ment through model-driven plant breeding. This involves 
collecting and analyzing diverse data types, including 
genomic sequences, phenotypic observations, environmen-
tal conditions, agricultural management practices, and vari-
ous omics data. The heterogeneity of these data poses sig-
nificant challenges, complicating integration and impeding 
valuable insights (Cobb et al. 2019; Crossa et al. 2021; Volk 
et al. 2021). Additionally, enormous amounts of standard 

image, spectral, LiDAR (light detection and ranging), X-ray 
(X-radiation), and other types of data are being generated for 
use in plant breeding and related applications. Many tools, 
resources, methods, and technologies have been developed 
over decades to try and extract meaningful information 
from all of these sources and use that information for better, 
smarter, and faster plant breeding. The progress that has 
been made is phenomenal, with plant breeding methods and 
technologies advancing so quickly that applied breeding pro-
grams can struggle to keep up. A significant amount of this 
advancement is due to statistical modeling efforts ranging 
from simple linear models to very complex and intricate 
prediction, decision-making, integration, extraction, and 
interpretation tools.

Defining and categorizing artificial intelligence 
methods

Interest in using “artificial intelligence” (AI) to tackle 
complex challenges has surged as its usefulness in myriad 
applications (e.g., protein folding prediction, object recog-
nition, natural language modeling), including many related 
to plant breeding (e.g., phenotyping, genomic prediction, 
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etc.), has been demonstrated. However, AI terminology 
has become increasingly ambiguous due to its varied 
use in science and the popular press. The authors do not 
wish to adjudicate which methods “count” as AI or any 
other category. We use AI expansively to refer to statisti-
cal learning models and non-statistical learning models 
(e.g., expert systems, see Fig. 1), although we will discuss 
non-statistical learning models only in passing. Similarly, 
we use statistical learning (following James et al. 2023) 
to include models ranging from linear regression to tree-
based models to deep learning methods. We divide this 
category into “statistical models,” which refers to linear 
regression and its extensions, and “machine learning mod-
els” (ML). The latter category we divide into “classical 
or traditional machine learning” (K-nearest neighbors 
(KNN), support vector machines (SVM), etc.) and “deep 
learning” (DL). It is worth noting that the boundaries 
between these methods are not always clear. For example, 
some might categorize penalized regression models and 
kernel regression models (e.g., reproducing kernel Hilbert 
space best linear unbiased predictors) as bordering statisti-
cal modeling and ML. In contrast, others might classify 
such models into one or the other groups. A useful framing 
presented in Breiman (2001) is that of “data modeling” 
and “algorithmic modeling,” with the former approach 
seeking a stochastic data model for a process while the 
latter seeks a model that maps input variables to a target 
response. The former approach leans more toward models 
with fewer, more readily interpretable parameters, while 

the latter tends toward less interpretable and more complex 
but often highly accurate models.

Another challenge in discussing the use of AI in plant 
breeding is that these technologies have become so ubiq-
uitous that many everyday tasks use AI, even without the 
user recognizing it. When one uses spell check or autocor-
rects on email, text messages, or documents, they are using 
AI. Internet searches, local computer searches, social media 
feeds, and reading recommendations are all connected to, if 
not directly using, natural language processing (NLP), large 
language models (LLM), computer vision, and other forms 
of AI. For the purposes of this review, the authors will pri-
marily ignore these “mundane” AI applications and focus 
on applications that are unique to breeding and/or research.

Introduction to AI methods for data integration 
in breeding

The ever-expanding tool kit of AI methods, many of which 
have only become practical to use in recent years, offers 
potentially superior capabilities for many aspects of man-
aging and analyzing large-scale high-dimensional datasets 
compared to the more limited number of tools available 
in the recent past. Some studies have demonstrated that 
AI can enhance the accuracy of plant phenotype and envi-
ronmental response predictions and, in some cases (but 
certainly not all), provide insights that may deepen our 
understanding of plant biology, ultimately contributing 
to improved breeding outcomes (Kuriakose et al. 2020; 

Fig. 1   A The categorization scheme used here is influenced by James 
et al. 2023 and Negus et al. 2024. For the purpose of this review, we 
focus on statistical learning approaches to artificial intelligence. This 
category contains statistical and machine learning models, with deep 

learning models being a subset of the latter. B While the distinction 
between statistical and machine learning models is at times vague, the 
latter tend toward greater flexibility, often at the cost of interpretabil-
ity
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Yoosefzadeh-Najafabadi et al. 2023). Diverse applications 
of AI technologies in plant breeding are being explored 
and hypothesized, offering complementary insights into 
how neural networks, ensemble learning, and other tech-
niques address challenges in crop improvement and data 
integration (Negus et al. 2024).

However, it is critical to recognize with some humility 
that the number of AI methods and applications that have 
been explored in breeding applications is only a small frac-
tion of what is currently in use in computer science and 
other domains. Additionally, new and promising methods 
are being developed every day! Even with extensive efforts 
and significant progress made by plant scientists and breed-
ers, the AI methods sufficiently tested to demonstrate clear 
utility are a small drop in the proverbial bucket. Addition-
ally, for many methods, perhaps those categorized as DL 
in particular, the way these methods have been tested in 
breeding applications may not be sufficient to bring out their 
most valuable and well-demonstrated strengths (more on this 
topic in Sect. “AI for genomic and phenomic data integration 
in plant breeding”).

Convolution neural network (CNN), gradient boosting 
machine (GBM), and random forest (RF), among other mod-
els, have been applied to genomic selection in various crops, 
including wheat, maize, and potato (Alemu et al. 2024), 
and have sometimes resulted in enhanced genomic predic-
tion accuracy, especially with sufficient genetic diversity. 
Moreover, fusing phenotypic data, including hyperspectral 
imaging, with genomic information using CNN techniques 
has been shown to improve trait prediction, such as wheat 
fusarium head blight (Thapa et al. 2024). AI approaches 
have also shown great promise for merging multi-scale data 
essential for plant breeding, ranging from molecular-level 
gene expression profiles to field-level data, like soil condi-
tions and climate variables (Washburn et al. 2021; Kick et al. 
2023; Togninalli et al. 2023; Ren et al. 2024). Some of these 
approaches leverage multi-omics technologies to provide a 
holistic view of plant development and/or performance.

In combination with technological improvements result-
ing in the wide availability of drones, cameras, and other 
phenotyping instruments at relatively low costs, AI meth-
ods have proven themselves fundamental to data extrac-
tion, mining, and analysis. The importance of these tools in 
plant breeding is clearly demonstrated and is only likely to 
increase in future. While phenotyping data that is analyzed 
weeks or months after its collection are still useful for breed-
ing research, faster turnaround times are needed for many 
within-season decisions. Real-time or near real-time data 
integration and analysis, such as early disease detection and 
trait monitoring in plants, remains challenging (Thompson 
et al. 2020; Trippa et al. 2023; Wang et al. 2024a). Overcom-
ing these obstacles is essential for improving the accuracy 
of trait predictions, expediting breeding cycles, optimizing 

resource management, and gaining comprehensive insights 
into plant growth and development (Tyagi et al. 2024).

Furthermore, AI can facilitate the integration of data 
across different platforms and species. Cross-species data 
integration is particularly promising, though notoriously dif-
ficult, in plant breeding as it allows researchers to transfer 
knowledge and insights from model species to less-studied 
crops. For example, deep transfer learning was applied to 
predict disease severity across species, specifically cassava, 
strawberry, and grape. The method improved classifica-
tion accuracy for plant disease severity when transferring 
knowledge between these distantly related species (Yan et al. 
2021). Extreme gradient boosting (XGBoost) and RF-based 
models, initially developed using maize and Arabidopsis 
data, were later applied to predict traits in rice using rice-
specific data (Cheng et al. 2021). Moreover, transfer learn-
ing has been employed in conjunction with other methods 
to predict specialized metabolism genes in tomatoes using 
data from Arabidopsis (Moore et al. 2020). This cross-spe-
cies applicability could enhance the efficiency of breeding 
programs and accelerate the development of improved crop 
varieties, but these methods do not solve (at least not yet) the 
common challenges of linkage drag, knock-on effects, and 
genetic background impacts.

AI has the potential to contribute to optimizing resource 
management in plant breeding, which is particularly rel-
evant in sustainable agriculture (Rai 2022). For example, 
CNN and long short-term memory (LSTM) neural networks 
have been applied to predict soybean maturity from drone 
imagery, significantly reducing the need for manual field 
assessments and optimizing the timing of drone flights. 
These models enhanced prediction accuracy and showed 
cost-saving potential by requiring fewer flights while main-
taining precision in maturity predictions (Moeinizade et al. 
2022). RF, least absolute shrinkage and selection operator 
(LASSO), and multi-trait ensemble genomic prediction 
models were applied to enhance wheat’s complex trait pre-
diction accuracy. These models optimized trait selection, 
such as grain yield, while managing trade-offs with protein 
content, improving long-term genetic gains, and preserving 
genetic diversity (Fradgley et al. 2023).

This review explores how AI technologies can incorpo-
rate complex datasets across various scales, platforms, and 
species to enhance plant breeding strategies. While more 
“traditional” ML methods have been used extensively to 
improve plant breeding, examples of the broad applica-
tion of newer and more complex AI methods across many 
crops and use cases remain limited. For example, the clear 
utility of DL approaches for certain image labeling and 
detection tasks is well established, while its effectiveness 
in genomic prediction remains underexplored, with some 
studies showing improvements and others not. This is not 
surprising, given that the largest recent advancements in AI 
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technologies have been in image and language tasks, which 
are not always directly transferable to genomic prediction 
applications. We give examples and discuss both demon-
strated and potential use cases where AI can improve data 
integration, with a specific focus on data management, 
genomic and phenomic selection, high-throughput pheno-
typing, multi-omics data integration, and cross-species inte-
gration—areas that represent some of the most impactful and 
actively explored applications. These advancements contrib-
ute to higher prediction performance, accelerated breeding 
cycles, and optimized resource management. Ultimately, this 
review highlights AI’s future potential in plant breeding, 
along with a healthy amount of skepticism and a recognition 
that many AI methods remain in their infancy.

Data integration challenges 
and opportunities in plant breeding

The importance of data integration

Integrating data across different scales, platforms, and spe-
cies in plant breeding using AI and other technologies is 
essential for many reasons, including informed and timely 
decision-making, efficient use of resources, scalability, 

sustainability, and effective collaboration across programs 
(See Fig. 2). Modern AI approaches such as ML and DL 
can enhance predictive accuracy by analyzing complex data-
sets to uncover patterns and correlations that may be missed 
by other methods, leading to more robust predictive mod-
els and a more reliable selection of desirable traits (Yang 
et al. 2022; Kick et al. 2023; Montesinos-López et al. 2024; 
and many others). Moreover, AI can potentially expedite 
the identification and development of desirable traits (via 
genomic selection), reducing the time and cost associated 
with conventional breeding methods (Rai 2022; Bose et al. 
2024). In one example, Togninalli et al. (2023) demonstrated 
the effectiveness of multi-modal DL by combining genomic, 
phenotypic, and environmental data to improve the accuracy 
of wheat grain yield predictions, suggesting it could help 
breeders identify high-performing lines earlier and sup-
port the optimization of resource allocation. AI-driven data 
integration has the potential to streamline plant breeding by 
furthering genomics-assisted breeding, thereby improving 
resource use (Bhat et al. 2023). However, there are barriers 
to this use, and many breeding programs have yet to explore 
and utilize modern AI capabilities. Many of these capabili-
ties also remain untested and inaccessible to smaller breed-
ing programs. In fact, a large number of breeding programs 
still struggle to implement genomic selection methods that 

Fig. 2   AI-driven data integration for plant breeding. This figure high-
lights AI’s potential in integrating diverse datasets to enhance breed-
ing strategies. G, Genotype; E, Environment; M, Management; AI, 

Artificial Intelligence. Reference: (Zhang et  al. 2022; Cembrowska-
Lech et  al. 2023; Yoosefzadeh-Najafabadi et  al. 2023; Chen et  al. 
2024)
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are broadly available and well demonstrated due to resource 
limitations and logistical challenges.

DL methods have been shown in some cases to enhance 
genomic selection by combining different types of data, pro-
viding more accurate estimations of breeding values, and 
facilitating cross-disciplinary research. Måløy et al. (2021) 
demonstrated how performer-based DL models improved 
genomic selection by combining genomic data (single nucle-
otide polymorphism (SNP) markers) with environmental 
factors to predict barley yields more accurately. The model 
effectively captured complex interactions between geno-
type and environment, outperforming traditional methods. 
Their attention mechanisms provided insights into the most 
influential genomic markers and environmental variables, 
facilitating more informed breeding decisions. Similarly, our 
group has shown that combining genomic, environmental, 
and management data using DL and/or ensembles of various 
models, including best linear unbiased prediction (BLUP), 
DL, and ML, can improve maize yield prediction, particu-
larly when cross-environment prediction is desired (Wash-
burn et al. 2021; Kick et al. 2023; Kick and Washburn 2023).

AI, in combination with other technologies and sensors, 
offers real-time monitoring, fast analysis, and adaptive man-
agement solutions, improving efficiency and reducing waste 
by providing timely recommendations based on sensor data. 
For instance, Yao et al. (2024) employed the seed germina-
tion rate-you only look once (SGR-YOLO) model to detect 
seed germination rates in wild rice. The model utilized an 
efficient channel attention (ECA) mechanism to extract 
important features from the images and a bidirectional fea-
ture pyramid network (BiFPN) to combine and refine these 
features. This approach, combined with fused image data 
from different germination environments over multiple days, 
enhances the accuracy and reliability of germination rate 
detection. Wang et al. (2024a) developed the ghost pyra-
mid 2 (GhP2)-YOLO model for real-time rapeseed flower 
counting. This model incorporated the P2 detection head 
and ghost modules to improve sensitivity to small objects. 
By fusing video data from various stages of rapeseed flow-
ering, this model significantly enhanced the tracking and 
detection accuracy of flowers and buds from the video. The 
model was also incorporated with the strong simple online 
and real-time tracking (StrongSORT) multitarget tracking 
algorithm, allowing real-time monitoring of rapeseed flower 
development in the field. In addition, Zhang and Li (2022) 
developed the EPSA-YOLO-V5s model, a YOLO-based 
architecture, combined with the efficient pyramid split atten-
tion (EPSA) mechanism for detecting the survival rate of 
rapeseed in plant factories. This model, applied across multi-
ple key growth stages, significantly improved detection accu-
racy by merging environmental data and data augmentation 
techniques, enabling real-time monitoring and swift inter-
ventions to ensure crop survival. These advanced AI-driven 

methods present a significant opportunity to develop vital 
tools for real-time monitoring, evaluation, and decision-
making in plant breeding programs.

Although AI offers exciting opportunities in plant breed-
ing, much remains to be uncovered before its full potential 
can be realized. Its ability to fuse data from various sources 
presents new ways to analyze complex interactions, such 
as genotype-by-environment-by-management (G x E x M), 
which are crucial for developing resilient crops (Xu et al. 
2022; Aziz and Masmoudi 2024). However, AI’s application 
in this field is still evolving, and more research is needed, 
such as in combining datasets from wild relatives and lan-
draces—valuable resources for accelerating pre-breeding 
efforts (Bohra et al. 2022). Continued research and refine-
ment are essential to fully harness AI’s potential in plant 
breeding and address this field’s unique challenges.

Categories of data

The diversity and complexity of data types in plant breed-
ing present both challenges and opportunities. These data 
encompass genetic sequences, omics data, phenotypic 
observations, environmental conditions, and agricultural 
practices, each offering insights for advancing crop improve-
ment. Effectively fusing and leveraging these data sources is 
essential to maximizing their potential (Pommier et al. 2019; 
Tong and Nikoloski 2021). Table 1, while not an exhaustive 
list, attempts to categorize some of these foundational data 
types, highlighting their role (or potential role) in develop-
ing robust crop varieties. For example, genetic data reveal 
hereditary factors associated with traits, while phenotypic 
data link these traits to observable plant characteristics. 
Environmental and management data guide adjustments for 
climate and cultivation techniques to enhance performance.

Omics data provide insights into molecular mechanisms, 
enhancing the understanding of plant development from 
gene expression to phenotypic manifestation and enabling 
targeted trait modifications. Additionally, biotic interaction 
data, along with historical, socioeconomic, and agronomic 
information, offer context for developing strategies that 
address both internal plant responses and external influ-
ences like pests, diseases, market demands, and agriculture 
practices. Combining these diverse data types is crucial for 
creating comprehensive breeding strategies that improve 
crop performance, quality, and adaptability, ensuring that 
new varieties are well-suited to both current and future agri-
culture demands.

Challenges of data integration

Plant breeding faces many data integration challenges as 
diverse datasets from high-throughput sequencing, phe-
notyping platforms, and real-time monitoring become 
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more prevalent (Gill et al. 2022; Nizamani et al. 2023). 
The findability of data is a core issue, as information is 
often stored in non-digital formats or isolated locations, 
making it difficult to locate and reuse efficiently. Data het-
erogeneity presents another challenge, with variations in 
data types, formats, and scales creating inconsistencies 
that complicate fusion. These differences must be harmo-
nized to ensure compatibility across datasets. The volume 
and complexity of large datasets generated by breeding 
technologies necessitate efficient storage and computa-
tion capabilities. Without appropriate infrastructure, 
these datasets can be challenging to handle and analyze. 
Additionally, the dynamic nature of data, particularly from 
real-time sensors and monitoring systems, requires imme-
diate processing and fusing to make timely analysis and 
actionable decisions.

Ensuring data quality and consistency is crucial, as varia-
bility in data collection methods, accuracy, and completeness 
can compromise the reliability of merged datasets. Missing 
values or inconsistent data collection methods can hinder 
accurate analysis. Moreover, computational challenges arise 
from the need for sophisticated analytical approaches, com-
bining plant biology and data science expertise to analyze 
complex data effectively. This necessitates collaboration and 
advanced training across disciplines. Data interoperability is 
a key for merging and sharing data across various platforms, 
often using different formats and protocols. This challenge 

requires adherence to standardized exchange protocols to 
ensure seamless data transfer.

Privacy and security are also significant concerns, as 
sensitive genetic and breeding data (that is not in the pub-
lic domain) must be protected from unauthorized access 
to safeguard intellectual property. Cost and resource con-
straints can limit the ability to implement advanced data 
integration techniques, especially in resource-limited breed-
ing programs. Efficient resource allocation and shared tool 
development are essential for addressing these constraints. 
Table 2 outlines these challenges, emphasizing their impli-
cations and potential solutions. It includes how AI and ML 
can potentially address these issues through strategies like 
standardization, real-time processing, and robust computa-
tional frameworks (Cembrowska-Lech et al. 2023).

These challenges are neither unique to plant breeding 
nor AI but manifest at a scale that often precludes or lim-
its the efficacy of ad hoc solutions. A dataset containing 
tens to hundreds of observations with few variables may 
be manageable with manual curation and manipulation and 
certain technologies (e.g., relational databases, version-con-
trolled scripting, etc.). However, conventional approaches 
can become insufficient as datasets grow in complexity and 
scale. A hybrid or adaptive strategy that integrates conven-
tional data management methods with advanced AI-driven 
techniques could be beneficial across different scales. This 
integrated approach would allow breeding programs to 

Table 1   Categories of data used in plant breeding

1 GWAS, genome-wide association study; 2G, genotype; 3E, environment; Reference: Washburn et al. 2021; Lassoued et al. 2022; Sangjan et al. 
2022a; Kick et al. 2023; Washburn et al. 2023;Sangjan et al. 2024

Category Definition Type of data

Genetic & Genomic Genetic information and variations within plant 
species

Genomic sequences, genetic markers, GWAS1, 
pedigrees, pathogen genomic data

Phenotypic Observations of physical and physiological traits 
of plants

Morphological traits, physiological traits, high-
throughput plant phenotyping data

Environmental Information on environmental conditions affecting 
plant growth

Climate data, soil characteristics, weather condi-
tions, abiotic stress data

Management Practices Data on techniques and inputs used in crop culti-
vation

Agricultural inputs (fertilizers, pesticides), cultural 
practices, field management strategies

Omics Molecular data on gene expression, proteins, 
metabolites, and epigenetic modifications

Transcriptomics, proteomics, metabolomics, epig-
enomics

Species & Evolutionary Classification, diversity, and evolutionary relation-
ships of plant species

Taxonomic data, biodiversity records, phylogenetic 
data

Remote Sensing, Sensor, & Phenomic Data from remote and proximal sensing technolo-
gies, including spectral data related to a plant’s 
endophenotype

Satellite imagery, drone imagery, proximal sensing 
data, soil moisture sensors, weather station data

Biotic Interaction Information on plant interactions with other organ-
isms

Symbiotic relationships, competitive interactions, 
plant microbiome interactions

Historical & Socioeconomic Historical and socioeconomic factors affecting 
plant breeding

Historical farming practices, breeding lineages, 
yield records, past climate data, market trends, 
policy impact, economic data

Agronomic & Experimental Data on plant performance, resource use, and 
experimental trial outcomes

Nutrient uptake measurements, water use efficiency, 
experimental trial data, G2 x E3 interaction data
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optimize efficiency, manageability, and analytical power 
according to their available resources. Ultimately, the opti-
mal solution depends on clearly assessing the breeding pro-
gram’s specific goals, scale, resources, and complexity.

AI for genomic and phenomic data 
integration in plant breeding

Over the past 150 years, plant breeding has significantly 
advanced. In the parlance of Wallace et al. (2018), breed-
ing has evolved from basic phenotypic selection (breeding 
1.0) to the integration of statistical theory and experimental 
design (breeding 2.0) and now to the use of genetic and 
genomic data in more advanced statistical and computational 
models (breeding 3.0). These models aim to select genotypes 
with desirable traits, sometimes identifying specific associ-
ated genes or SNPs. Breeding 4.0 has been variously char-
acterized as including the further integration of genetic data, 
improved computational methods, and plant transformation/
gene editing more widely into breeding programs (Ramstein 
et al. 2019; Kuriakose et al. 2020). Some have suggested that 
Breeding 5.0 should be characterized by the use of big data 
and advanced AI methods (Kuriakose et al. 2020; Yoosefza-
deh-Najafabadi et al. 2023). While linear modeling has been, 
and will likely continue to be, productive in breeding, ML 
and DL methods are emerging as promising options.

DL is notable for its ability to approximate any continu-
ous function (Hornik et al. 1989; Zhou 2020). It has shown 
excellent practical efficacy in other domains, from medical 
diagnostics to NLP (Houssein et al. 2023; Alzubaidi et al. 
2024). While these methods often perform well with data 
containing nonlinearities, in practice, their performance in 
genomic prediction is frequently similar to conventional 
methods (Montesinos-López et al. 2021a). The performance 
of these methods may improve with more observations, 
richer input data, new or different model architectures, or 
model combinations (Washburn et al. 2020; Montesinos-
López et al. 2021a, 2021b).

As plant breeding advances, the modernization of prac-
tices through advanced technologies and digital innovations 
is reshaping the field. AI-driven techniques for merging 
diverse datasets have become essential tools in this trans-
formation (Ramstein et al. 2019; Fu et al. 2022; Wang et al. 
2023b). Using multiple data sources can potentially provide 
a deeper understanding of the complex interplay between 
various factors, enhancing the efficiency and effectiveness 
of breeding strategies to improve plant breeding outcomes 
relative to simpler models. Envirotyping and enviromics data 
from satellites and other sources can also enhance predic-
tive models for use in breeding (Resende et al. 2024; Yunbi 
et al. 2022). This section explores current AI approaches for 

model-driven selection from genomic, phenomic, or multi-
modal datasets.

Genomic prediction and selection

Genomic prediction and selection have transformed plant 
breeding by enabling more accurate predictions of desir-
able traits through advanced computational models. AI 
techniques are increasingly being merged to enhance the 
predictive power of these models. This section explores the 
use of AI and ML in genomic selection models, recent work 
focusing on merging genetic and genomic information with 
other sources, and the benefits of utilizing multiple models 
in conjunction.

Operating on genotypes

While many approaches for AI and ML-based genomic 
prediction models have been tested, no one approach has 
appeared to supersede the rest. Some performance variabil-
ity is likely due to differences in model tuning procedures, 
and a method’s suitability largely depends on the architec-
ture (purely additive effects, nonlinearities, interactions, etc.) 
of the trait in question and the specific use of the model. 
For instance, a study of New Mexican chile peppers tested 
a variety of AI methods, finding that multilayer perceptron 
(MLP) models performed best for some traits and linear 
models performed best for others (Lozada et al. 2023). An 
examination of models for rust resistance selection found 
that RF models performed best when predicting all individu-
als, but an SVM was more effective at selecting the top 15% 
of individuals (González-Camacho et al. 2018). The specific 
trait and purpose of the model must be considered when 
selecting the best model. Another important consideration 
is that data formatting, quality checking, and dimensionality 
reduction measures can impact different methods in different 
ways. While testing multiple methods using the same ver-
sion of a dataset is simple and convenient, the results may 
not be representative of the true potential of diverse models 
and datasets.

Although these factors preclude a universal prescription, 
published studies do suggest model classes that may be 
effective. Within genomic prediction DL models, many use 
MLPs or CNNs, although LSTM has been effectively used 
in maize and eucalyptus (Maldonado et al. 2020). CNNs 
seem more effective generally, with specifics varying across 
studies (Montesinos-López et al. 2021a). Ma et al. (2018b) 
observed this, finding that the CNN (DeepGS, DL method 
to predict phenotypes from genotypes using CNN) outper-
formed MLP and regression models for wheat grain length 
and other traits. CNNs continue to be applied and refined 
across species. Promising results in soybeans were reported 
with a CNN model featuring two parallel processing streams 
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(Liu et al. 2019), available through an open-access web 
server, G2PDeep: provides a DL framework for quantitative 
phenotype prediction and discovery of genomics markers 
(Zeng et al. 2021). Recently, Wang et al. (2023a) corrobo-
rated the efficacy of CNNs, finding that a multilayer CNN 
with batch normalization layer (DNNGP, deep neural net-
work for genomic prediction) performs similarly to or better 
than benchmarking models, including other CNN models.

While CNNs and MLPs have proven useful, further 
exploring data representation strategies and network archi-
tecture may improve their performance. Although neural 
networks can discover relationships from input data, poten-
tially reducing the need for feature engineering, these mod-
els may still benefit from specific representations of the data. 
For example, genotypes can be represented in myriad ways, 
including as nucleotides (4 discrete values), as homozy-
gous, heterozygous, or missing (3 discrete values) (Liu 
et al. 2019), as principal components (continuous values) 
(Washburn et al. 2021), or even as slices of kinship matrices 
(continuous values) (Nazzicari and Biscarini 2022). Differ-
ent model types and architectures may be better suited to 
certain scenarios and require different representations of the 
data for optimal performance. Continued investigation into 
matching trait architecture, data representation, and model 
structure will likely yield increased performance.

In cases where network size and overfitting influence 
model performance, reducing the number of connections in 
an MLP by “pruning” the network or initially constraining 
connections may be profitable avenues for exploration. The 
latter approach is of particular interest as it can potentially 
increase model interpretability, e.g., by having the model 
structure mimic known biological relationships. In the past 
decade, several efforts have been in this vein (Gazestani and 
Lewis 2019). Promising results have been obtained in yeast 
where biologically, an informed model has been able to pre-
dict the effect of gene knockouts (Ma et al. 2018a) and to 
predict treatment resistance in prostate cancer (Elmarakeby 
et al. 2021). One study showed that this approach assigned 
higher weights to causal SNPs in a simulation. This method 
used biological data to identify genes associated with sim-
ple human traits (e.g., hair and eye color). However, it was 
less effective with complex traits (schizophrenia) (van Hilten 
et al. 2021). The extent to which similar approaches ben-
efit prediction efforts or identification of associated SNPs 
remains to be seen. Additionally, MLP or CNN models do 
not provide information on additive and dominance effects 
in the way other genomic prediction models do.

Leveraging multiple, and non‑traditional, data sources

AI methods are exceptionally flexible to the use of multiple 
data sources and interactions. For example, decision tree-
based methods allow for interactions between data types 

(e.g., G x E, G x E x M, etc.) without being explicitly speci-
fied. This can be a valuable property, especially for traits 
where environmental effects explain a meaningful compo-
nent of the trait’s variance, as is the case for many traits 
of interest in plant breeding (Rogers et al. 2021). This is 
not to suggest that interactions between diverse and high-
dimensional covariates cannot be effectively included in 
linear models (for example, see Jarquín et al. 2014) but that 
AI methods increase the variety of approaches to include 
these interactions. Using a decision tree-based GBM, West-
hues et al. (2021) found that maize yield predictions (but 
not height predictions) were substantially improved by the 
use of genotypic and environmental data for predictions of a 
new genotype and year combination. A recent investigation 
by Fernandes et al. (2024) reported similar findings with 
the inclusion of environmental data improving GBM per-
formance relative to a factor analytic model.

DL models provide an exciting approach to incorporating 
interactions between data types by dedicating regions of the 
model to process each type separately, directly within their 
architectures. Typically, these models handle multimodal 
data inputs through parallel processing streams, where each 
data type is processed separately. These streams allow each 
data modality to be transformed independently before being 
combined in feature fusion layers or as components of a 
weighted prediction (Wang et al. 2023a). Attention mecha-
nisms can be incorporated to aid in learning the most rel-
evant features from each dataset, resulting in a more useful 
unified representation for improved prediction accuracy 
(Ren et al. 2024). This approach has been tested for maize 
yield prediction using data from the Genomes to Fields Ini-
tiative (G2F; https://​www.​genom​es2fi​elds.​org/, accessed on 
August 8, 2024) (McFarland et al. 2020; Lima et al. 2023a, 
b; Washburn et al. 2024) and found to be an effective strat-
egy (Washburn et al. 2021), particularly when the portions 
of the network operating on each data type are optimized 
independently (Kick et al. 2023). Using a portion of the G2F 
data, Sharma et al. (2022) took a distinct but conceptually 
related approach by creating embeddings of soil, manage-
ment, weather, and genomic data before applying a multi-
modal cross-attention module to capture G x E effects and 
passing the resulting embeddings into a shared portion of 
the model, reporting better performance for prediction in 
new environments and similar performance for new genetics.

A different way to leverage multiple datasets is by cre-
ating additional model targets rather than inputs. Multi-
trait prediction has been effectively deployed with linear 
and more advanced AI models (e.g., Montesinos-López 
et al. 2019). The exciting possibility here is not neces-
sarily the multi-trait prediction of secondary phenotypes 
but the use of unconventional secondary phenotypes. 
Sandhu et al. (2021) incorporated high-throughput plant 
phenotyping data into a model using vegetation indices 

https://www.genomes2fields.org/
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as secondary phenotypes for genomic prediction. They 
report an improvement in prediction accuracies for grain 
yield and grain protein content using multi-trait models 
rather than unitrait models. With increased availability 
and diversity of data, the capability of AI models to flex-
ibly incorporate a wide range of data will only increase 
in usefulness. It is important to note that each model has 
strengths and weaknesses, and breeding programs also 
have practical and resource constraints. For example, 
MLP and CNN models require different computational 
resources than linear models. The time required for train-
ing CNN models is often far greater than that required for 
linear models.

Using multiple models

In selecting models for a plant breeding program, the deci-
sion may not be a matter of “which model” but “which 
models.” Combining predictions from multiple models and 
types of models into an “ensemble” is often effective for 
prediction. This can take the form of training one model 
to predict a variable and others to predict the error of 
the first (model stacking) or aggregating predictions from 
multiple models (e.g., through a weighted average). Both 
strategies may be effective, with the latter approach having 
the additional benefit of being potentially computationally 
inexpensive, provided that the base models are already 
trained and allow for leveraging performant models such 
as interaction containing BLUPs and deep neural networks 
to further increase prediction accuracy (Kick and Wash-
burn 2023).

Ma et al. (2018b) demonstrate that an ensemble of a 
CNN and ridge regression (RR)-BLUP improved the selec-
tion of top-performing individuals and found that their 
CNN model and ensemble outperform RR-BLUP when 
extreme values are removed owing to the model’s differ-
ential sensitivity. Diverse model types presumably can bet-
ter represent different relationships in the data and thus 
stand to benefit from their differential sensitivity in an 
ensemble. Furthermore, model averaging appears robust 
to implementation details with unoptimized combinations 
of multimodal models and weightings, often improving 
performance (Kick and Washburn 2023). The effective-
ness of using multiple models is highlighted by a recent 
competition in which teams from industry, academia, and 
government sought to most accurately predict the yield 
of diverse maize genotypes across North America (Lima 
et al. 2023c). Interestingly, 52% of the teams, including the 
winning team, used an ensemble model (Washburn et al. 
2024). Also of interest, there were highly ranked teams 
using linear models, DL, and other methods both alone 
and as ensembles.

High‑throughput plant phenotyping and phenomic 
selection

High-throughput phenotyping (HTP) has significantly 
expanded the availability and scale of phenotyping data, 
enhancing its application in breeding programs and man-
agement decisions. HTP enables the assessment of traits 
that were previously too costly or labor-intensive to meas-
ure at scale (Sangjan et al. 2023). Spectral data, such as 
near-infrared (NIR), are valuable for plant breeding as it can 
serve as a proxy for traits of interest, supplementing genetic 
information in phenomic prediction or providing secondary 
traits for selection (Murray et al. 2008; Cook et al. 2012; 
Washburn et al. 2013; Sandhu et al. 2021). When these traits 
can be measured from the seed or early in the growing sea-
son, they allow for early selection before pollination. Data 
collection from unoccupied aerial vehicles/systems (UAV, 
UAS, Drone) has become commonplace in plant breeding, 
but the technologies and methodologies continue to evolve. 
This section will discuss integrating HTP into prediction 
models for plant breeding.

Data extraction for breeding from HTP

Perhaps the most advanced and well-demonstrated uses of 
non-traditional AI methods in plant breeding today are com-
puter vision methods used to extract numerical information 
from images and other sensor data. The phenotyping of traits 
that are easy to measure and correlated with more important 
traits that are difficult to measure has always been impor-
tant for breeding. Imaging methods, including microscopy, 
spectroscopy, and photography, have a long history of use 
in breeding and other research endeavors. However, both the 
data collection and extraction tools used have progressed 
substantially. The trend toward more complex and automated 
methods, if simply to increase the number of data points 
generated with a given amount of funds or time, is happen-
ing at a rapid pace. This topic has been reviewed extensively 
in other recent articles, so we mention only a few examples 
here (Murphy et al. 2024; Sheikh et al. 2024).

Phenotype extraction from image data has been broadly 
applied. For example, a team led by researchers at the Oak 
Ridge National Laboratory applied a few-shot learning 
(training few samples) and CNN approach, along with other 
image-processing tools, to identify and quantify leaf traits 
from thousands of field-collected tree leaf images (Lager-
gren et al. 2023). Others have successfully used deep neu-
ral networks (DNNs) and more traditional ML to identify 
and quantify diseases on corn leaves (DeChant et al. 2017; 
Wu et al. 2019), detect and quantify Fusarium head blight 
on wheat spikes (Cooper et.al. 2023), phenotype seeds and 
other reproductive organs (Miller et al. 2017), and create 
digital twins and virtual reality models of plants and fields 
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(Mitsanis et al. 2024). Significant progress has also been 
made in root phenotyping and data extraction, including 
various image analysis and extraction tools, as well as X-ray 
computed tomography (Bucksch et al. 2014; Seethepalli 
et al. 2021; Ju et al. 2024).

Integrating HTP data in predictive models

In the context of prediction and selection, reflectance meas-
urements provide a non-destructive means of quantifying 
traits that may not be visible to the naked eye. Using NIR 
spectra in “phenomic selection” can enable similar per-
formance relative to the use of molecular markers while 
reducing the per-sample cost (Rincent et al. 2018). Model 
predictive ability is influenced by the organ assayed (e.g., 
leaf, grain, stem, etc.), making tissue and timing essential 
implementation details.

The architecture of the trait or traits under selection 
appears to influence the efficacy of phenomic selection 
without genetic information. Analysis of wheat in multi-
environmental trials (using linear models) supports this, 
finding competitive performance between genomic and phe-
nomic prediction for grain yield but slight underperformance 
for heading date, a trait with predominantly additive vari-
ance (Robert et al. 2022). A similar study in maize finds 
that phenomic prediction is most accurate for predicting 
the performance of new genotypes in tested environments 
and functionally equivalent to genomic prediction for new 
genotypes in new environments (DeSalvio et al. 2024). Phe-
nomic prediction using a CNN outperformed or matched 
genomic prediction traits related to Fusarium head blight 
in winter wheat (Thapa et al. 2024). Within phenomic pre-
diction, different complex traits seem to be best predicted 
using different bands (Zhu et al. 2021). Taken holistically, 
phenomic prediction can compete with genomic selection, 
but performance varies across traits, and if multiple traits 
are considered, collecting data covering the entire spectrum 
is prudent. It is also important to understand that phenomic 
and genomic selection are not always directly comparable, 
as different use cases will favor one or the other.

Phenomic selection may be especially valuable for crops 
where the cost or availability of genetic tools remains a 
barrier. An analysis of a plant breeding program for one 
such crop, Coffea canephora (Robusta/Conilon coffee), 
observed that NIR outperformed genomics for several 
environments. Having NIR does not remove the usefulness 
of genomic data; the best performance was achieved using 
both (Adunola et al. 2024) and can be used to model G x 
E effects (Robert et al. 2022). The specific costs involved 
are important to the utility of these methods. Analysis of 
a large soybean panel suggests that phenomic prediction 
models can be competitive with genomic prediction and 

perform well at making predictions in new environments, 
even given data for a single environment (Zhu et al. 2021). 
They noted that while using NIR spectroscopy and gen-
otyping together is optimal for model performance, the 
increase may not be worth the cost of genotyping. As with 
most technologies, determining the optimal use requires 
balancing trade-offs. In the first case presented here, NIR 
was collected on the coffee cherry, requiring more time 
for plant development than a tissue sample for sequenc-
ing would. In many cases, the specific costs, opportunity 
costs, and existing data available to a breeding program 
may dictate the most useful modeling strategy.

In terms of the modeling approach, while some of 
the studies above that have considered AI methods have 
found them to be effective (Sandhu et al. 2021; Thapa et al. 
2024), others have preferred variations of linear models 
instead (Zhu et al. 2021; Winn et al. 2023; Adunola et al. 
2024). Compared to genomic selection work outlined in 
the previous section, model architectures have been less 
explored. This suggests promising exploration opportu-
nities, especially when combining phenomic data with 
genetic, environmental, and management data. These stud-
ies indicate that phenomic selection is a valuable approach 
and can be competitive with genomic selection, particu-
larly when combined with additional data sources.

AI for multi‑omics and cross‑species data 
integration in plant breeding

Multi‑omics data integration

AI techniques have been used and hold even more future 
potential for integrating multi-omics data, which includes 
genomics (deoxyribonucleic acid (DNA) sequence infor-
mation), transcriptomics (ribonucleic acid (RNA) expres-
sion data), proteomics (protein abundance and interaction 
data), and metabolomics (metabolite profiles). Combining 
these diverse data types into a unified analytical frame-
work could uncover a deeper understanding of the biologi-
cal processes that govern plant traits. This integration is 
essential for developing predictive models and biological 
networks that reveal the interactions among various molec-
ular entities (Ahmed et al. 2024; Raza et al. 2024). How-
ever, as AI’s application in this area continues to evolve, 
some objectives may take time to achieve or may not be 
fully attainable, and applying these multi-omics frame-
works broadly in breeding programs is resource-intensive. 
The following section examines the current research on 
AI’s role in combining multi-omics data (see Table 3).
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AI techniques and predictive accuracy for multi‑omics data 
integration

Integrating multi-omics data through advanced AI and ML 
techniques shows great potential for enhancing predic-
tive modeling in plant breeding. For example, Wang et al. 
(2024b) exemplified this by utilizing the iMAP (integra-
tive multi-omics analysis and ML for target gene predic-
tion) algorithm to combine genome-wide association study 
(GWAS) and transcriptomics data, effectively identifying 
calcium signaling genes linked to disease resistance in oil-
seed rape. This study illustrates RF’s potential to manage 
complex multi-omics data to enable faster and more accurate 
identification of resistance genes. Wang et al. (2023a) devel-
oped DNNGP, a DNN-based model, to fuse multi-omics 
data, including SNPs and transcriptomics, for predicting 
complex traits such as grain yield. DNNGP captures non-
linear interactions across biological layers by leveraging a 
multi-layered neural network structure, allowing the model 
to uncover complex relationships between genes, proteins, 
and other omics data. This enhances prediction accuracy for 
traits such as plant height and kernel number in maize. These 
techniques can be applied to merge omics data, presenting 
valuable opportunities for identifying genetic markers that 
enhance plant resilience to diseases and stress responses.

Ren et al. (2024) used dual-extraction modeling (DEM), a 
DL-based multi-modal architecture designed to fuse diverse 
omics layers for accurate phenotypic prediction and func-
tional gene mining. The DEM platform was developed as a 
software tool to facilitate its application within the research 
community, allowing researchers to seamlessly incorporate 
multi-modal omics datasets and phenotypic data for classi-
fication and regression tasks. This underscores the growing 
accessibility of AI-driven multi-omics integration in plant 
research.

Leveraging AI techniques on combined datasets also 
offers the potential to improve the accuracy and reliability 
of predictions related to various plant traits, such as yield, 
disease resistance, and stress tolerance. For instance, Wu 
et al. (2024) applied ML models on fused multi-omics data 
in maize, combining SNPs, phenomics traits, and metabolic 
profiles. Their models showed improved maize yield predic-
tion accuracy, with the RF model performing best due to its 
nonlinear feature selection capabilities, and it was able to 
identify associated genomic regions. Cheng et al. (2023) 
demonstrated that RF, SVM, and artificial neural networks 
(ANN) could offer insights into plant resilience. Their study 
combined metagenomic data and functional gene profiling 
with soil and plant traits to analyze root-associated micro-
bial communities in rice cultivars under cadmium stress. 
The models identified microbial biomarkers involved in 
rice’s cadmium accumulation and stress tolerance. Yang 
et al. (2024) demonstrated that CNNs can predict epigenetic Ta
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signals and uncover complex genomic interactions from 
integrated, large-scale multi-omics datasets, including 
genomes, transcriptomes, and epigenetic data from thou-
sands of accessions.

As shown in Table 4, various AI techniques can enhance 
predictive accuracy when analyzing combined data across 
omics layers and from multiple scales and platforms.

Network construction through multi‑omics data 
integration

AI-driven methods offer promising possibilities not only 
for predictive modeling but also for constructing and ana-
lyzing intricate biological networks from multi-omics data 
and other diverse sources. These approaches may provide a 
deeper understanding of the molecular pathways that influ-
ence plant traits, potentially advancing crop improvement 
and management for more precise, efficient, and sustain-
able outcomes (Ko and Brandizzi 2020; Chen et al. 2023; 
Manickam et al. 2023). Some of the networks that can be 
developed and/or analyzed through such integration include 
gene regulatory networks (GRNs), protein–protein interac-
tion networks (PPINs), and metabolic networks.

GRNs are developed by incorporating gene expression 
data with genomic information to map gene regulatory rela-
tionships. These networks offer insights into gene expression 
and trait regulation, helping researchers identify regulatory 
genes and interactions. Understanding GRNs is useful for 
deciphering plant stress responses (Kulkarni and Vandepoele 
2020). AI and ML techniques can enhance GRN inference by 
effectively handling and combining complex, high-dimen-
sional data, leading to the opportunity for improving accu-
racy in predicting regulatory relationships and gene inter-
actions. Cassan et al. (2024) demonstrated that a weighted 
RF could enhance GRN inference by merging transcription 
factor binding motifs (TFBMs) and optimizing data integra-
tion to minimize prediction errors in Arabidopsis. Adjusting 
TFBMs integration improved model performance, enabling 
more precise regulatory interaction predictions. Similarly, 
Lin and Ou-Yang (2023) showed that a DL model, Deep-
MCL: deep metric learning for cell-type labeling, enhances 
GRN inference by leveraging multiple data sources, high-
lighting DL’s potential in advancing GRN analysis.

PPINs illustrate protein interactions by combining prot-
eomic and genomic data, which is useful for understanding 
cellular functions and pathways. Mapping these networks 
helps identify essential proteins involved in important pro-
cesses, aiding in improving traits such as disease resistance 
and stress tolerance in plants (Mishra et al. 2022; Shi et al. 
2023). AI and ML can potentially strengthen the PPINs 
analysis; for example, Zhang et al. (2019) introduced Deep-
Func, a DL framework that fuses protein sequences and 
PPINs using the DeepWalk algorithm to improve protein 

function prediction. Similarly, Pan et al. (2022) developed 
DWPPI (DeepWalk-based protein–protein interaction), 
a model designed to predict PPIs in plants by combining 
multi-source data and large-scale biological networks—the 
model utilized graph embedding algorithms for data inte-
gration and analyzed protein sequences to predict interac-
tions. This approach improved accuracy in mapping PPIs 
and identifying regulatory proteins across species such as 
Arabidopsis, maize, and rice.

Metabolic networks integrate metabolomic, transcrip-
tomic, and proteomic data to map plant biochemical path-
ways, revealing how metabolites are produced and used. AI 
and ML-driven approaches can potentially advance under-
standing of these interactions (Zulfiqar et al. 2024). For 
instance, Li et al. (2020) applied k-mean clustering and prin-
cipal component analysis (PCA) to analyze high-resolution 
spatiotemporal metabolome and transcriptome data, meta-
bolic network, from MicroTom tomatoes, identifying regula-
tory networks that control metabolic processes throughout 
the growth cycle. Babadi et al. (2023) developed ShAdow 
pRice-based meTabolite pRotein intEraction (SARTRE), a 
computational framework merging RF classifier with con-
straint-based modeling to predict metabolite–protein inter-
actions (MPIs) within metabolic networks. This method 
achieves high accuracy in model organisms. Although these 
studies focus on model organisms and systems, identifying 
regulatory networks and MPIs holds significant potential 
for plant breeding research. Understanding these interac-
tions is one of the keys to improving plant stress resilience, 
growth, and nutritional quality (Niu et al. 2020; Manickam 
et al. 2023).

One notable innovation in multi-omics data integration 
is AlphaFold, an open-source AI tool developed by Google 
DeepMind for accurate three-dimensional (3D) protein 
structure modeling (Jumper et al. 2021). Even though pri-
marily focused on protein folding, AlphaFold has signifi-
cant potential for application in omics studies by providing 
crucial insights into predicting PPIs, exploring gene func-
tions, and mapping metabolic pathways. This AI-driven 
tool enhances the understanding of biological networks, 
including GNNs, PPINs, and metabolic networks, empow-
ering researchers to incorporate structural protein data into 
multi-omics analyses, thereby advancing plant biology and 
crop improvement (Yin et al. 2023; Tavis and Hettich 2024).

Cross‑species data integration and transfer learning

Transferring knowledge represented in a model from one 
task to a related task can be an effective strategy to increase 
model performance or decrease the computational or data 
resources needed for a model to perform well. However, 
outside of image processing (e.g., Jiang and Li 2020), the 
application of this approach has been limited in agriculture. 
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One approach to transfer learning is to include a pre-training 
phase using data similar to the target dataset, e.g., data could 
be from a related system (sorghum vs. maize) or at a dif-
ferent level of resolution (county-level yield vs. plot-level 
yield). Assuming similar relationships between the pre-
training and target datasets, the model weights will encode a 
pattern more similar to the target task than they would if the 
weights were randomly initialized. Washburn et al. (2021) 
used this approach to successfully increase model accuracy 
by using historical data on maize yield in the USA prior to 
the plot-level experimental dataset. The authors noted that 
pre-training changes the relative importance of the input data 
(soil, rather than genetics being most influential with pre-
training), highlighting that fundamental changes in how the 
model behaves may result.

Ubbens et al. (2023) proposed an interesting strategy for 
genomic prediction similar to pre-training but sufficiently 
distinct to warrant separate consideration. They proposed 
using a network fit with simulated data to predict observed 
data. The simulated data mimics the target population’s 
population structure. After training on this synthetic data, 
the “Genomic Prior-Data Fitted Network,” which consists 
of a transformer and operates on principal component 
loadings, can perform inference. This approach overper-
formed genomic best linear unbiased predictor (GBLUP) 
for a majority of traits in wheat and lentil datasets (unstruc-
tured population) and performed well across most locations 
used for the soybean nested association mapping panel 
(SoyNAM) but underperformed in some.

Beyond leveraging data at different scales, data from 
different regions or species can be leveraged. Wang et al. 
(2018) used a model of soybean yield based on satellite 
imagery from Argentina to predict soybean yield in Brazil 
via transfer learning. This approach is beneficial because it 
reduces the dataset size required for a performant model and 
can result in substantially faster training (fourfold speedup 
in this case). A different strategy is to combine datasets 
using multitarget learning. Unlike the multitarget prediction 
models discussed earlier, where multiple traits were used, 
Khaki et al. (2021) demonstrated that maize and soybean 
yield can be predicted with a single model by using a clev-
erly designed neural architecture. Conceptually, this allows 
for shared relationships (e.g., weather conditions conducive 
for growth in both species) to be learned from more obser-
vations while still permitting trait-specific (or species-spe-
cific) relationships to be learned. Phylogenetic relatedness 
between conserved genes across two species has also been 
used as a means for predicting RNA expression differences 
and similarities (Washburn et al. 2019).

Note, however, that these examples are not genomic pre-
diction models. Using transfer learning for genomic pre-
diction is an exciting possibility but presents certain chal-
lenges. Even if data from a single species are considered, the 

number of markers and their position in the genome across 
studies may vary meaningfully. Using transformed data does 
not necessarily circumvent this issue. For instance, PCA-
transformed datasets are neither guaranteed to have an equal 
number of principal components nor similar loadings. These 
challenges are compounded for data from multiple species 
as factors such as ploidy, number of chromosomes, genes 
present, and relationships between genes and gene networks 
may differ substantially. Other potential solutions include the 
use of SNP chips, filtering methods, or imputation, but this 
becomes more challenging as the distance between species 
increases.

Modern phylogenomic methods and the use of gene syn-
teny can provide hundreds or even thousands of common 
genes across species (Lyons and Freeling 2008; Washburn 
et al. 2017; Grass Phylogeny Working Group III et al. 2024; 
many others). While these approaches have been very suc-
cessful for evolutionary studies, applying them directly 
to breeding has been more challenging. Non-genic SNPs, 
for example, can be very difficult to recover and compare 
across species, and functional conservation is not guaran-
teed even for genes. A significant effort was made recently, 
and is ongoing, to develop resources and tools (many within 
the umbrella of AI) for using species from across the grass 
(Poaceae) tribe Andropogoneae to improve crop species 
like corn and sorghum (Li et al. 2024; Zhai et al. 2024). 
This effort has resulted in many useful AI tools for cross-
species analyses as well as sequenced genomes of crop wild 
relatives. A separate but related project was able to demon-
strate successful cross-species modeling between maize and 
sorghum in relation to drought stress (Pardo et al. 2023). 
Ultimately, developing cross-species environmental embed-
ding models may be desirable to enable model development 
to focus on learning crop-specific relationships. If network 
size and overfitting influence model performance, reducing 
the number of connections in an MLP by “pruning” the net-
work or initially constraining connections may be profitable 
avenues for exploration. The latter approach is of particular 
interest as it can potentially increase model interpretabil-
ity by having the model structure mimic known biological 
relationships.

Synthesis and future directions of AI in plant 
breeding

AI methods have been a vital part of breeding for years, and 
they have revolutionized the way breeding is done in many 
respects (e.g., genomic prediction and HTP methods in the 
past few decades). More recent AI advances, such as DL and 
generative AI, are also significantly impacting the field, and 
they appear poised to transform additional aspects of breed-
ing. Which areas will be most impacted by the application 
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of new methods is unknown, but it seems likely that AI will 
increasingly touch every aspect of modern plant breeding 
just as it is doing for human society in general. This wide-
spread integration of AI highlights the importance of build-
ing modern breeding teams comprising specialists in plant 
breeding, genomics, bioinformatics, data science, machine 
learning, and data management.

The amount and diversity of data collected by modern 
breeding programs are enormous and only likely to increase. 
Integrating, mining, analyzing, and making decisions from 
these data is challenging and requires ever-evolving meth-
ods. Recently developed AI methods have demonstrated the 
potential to manage and analyze large, complex datasets 
from various sources. These approaches show promise in 
addressing traditional challenges in data integration, such 
as heterogeneity, high dimensionality, and scalability limi-
tations. AI methods can also combine data across different 
scales, platforms, and species, potentially leading to a more 
comprehensive view of plant development and performance. 
Data integration using AI offers the potential to identify the 
genetic basis of desirable traits. This could inform precise 
breeding strategies and improve program efficiency (Thapa 
et al. 2024).

Across the breeding landscape, AI applications exist on a 
spectrum of adoption rather than a simple current or future 
dichotomy. Technologies such as phenotype prediction, 
environmental response modeling, and multi-data source 
integration are operational realities in some advanced breed-
ing programs while remaining aspirational for others. The 
number of AI tools and applications that have been tested 
and explored in breeding remains small in comparison with 
those available now and those being newly developed on a 
regular basis. New and different ways of feeding data into 
modern tools like DL and generative AI need to be tested 
and broadly demonstrated to enable their wider uptake into 
applied breeding programs. Moving new methods from the 
realm of promising results in a limited number of studies 
to fine-tuned, reliable, and accessible breeding tools will 
require time, resources, creativity, and very significant 
efforts.

While traditional statistical models, such as BLUPs, 
remain highly effective, the addition of DL and ensem-
ble models provides potential new avenues for identifying 
promising genotypes, potentially reducing breeding cycles 
and saving both time and resources (Ma et al. 2018b; Tog-
ninalli et al. 2023; Azrai et al. 2024). Early phenotyping 
and fast turnover for decision-making using AI’s capacity 
to process and merge data from diverse sources quickly 
can enable breeders to identify critical information earlier 
and at larger scales than traditional methods (de Castro 
et al. 2019). These enhanced methods would support pro-
active breeding decisions and accelerate the development 
of improved crop varieties (Leukel et al. 2023; Salehi et al. 

2024). AI may also enable simulations and integration of 
various environmental and genetic scenarios, offering the 
possibility of reliable predictions that lessen the need for 
large-scale physical trials. Although the extent of tech-
nologies’ capacity to minimize the need for extensive field 
trials and datasets is not yet known, the potential for addi-
tional and significant resource savings is certainly there. 
(Rai 2022; Fradgley et al. 2023).

AI models are being developed to assess genotype per-
formance across various environments. These models could 
help breeders identify traits that contribute to resilience 
under environmental stress, though this remains an area of 
active research (Sinha et al. 2023; Mushtaq et al. 2024). 
AI can integrate molecular-level data with environmental 
and phenotypic data, potentially providing a holistic view 
of plant growth and development. This integration may lead 
to more effective breeding strategies by allowing breeders 
to see the bigger picture across scales (Kick and Washburn 
2023; Fernandes et al. 2024).

AI methods show significant promise for cross-species 
data integration for breeding, including the use of crop wild 
relatives. They can be used to leverage data from well-stud-
ied model organisms to hopefully inform breeding strategies 
for less-studied crops, potentially speeding up the discov-
ery and integration of beneficial alleles and reducing the 
time required to develop new varieties (Yan et al. 2021; Xu 
et al. 2022). Another area where this could have particularly 
important benefits is for breeders of poorly funded crop sys-
tems and those with long generation times and other impedi-
ments to traditional research methods. Utilizing existing data 
from well-studied species could reduce the need for exten-
sive data collection in less-studied crops, lowering research 
costs (Yan et al. 2021).

The likely payoffs of these efforts include faster, better, 
more sustainable breeding and agricultural systems as well 
as improvements in resource use efficiency, but none of 
these things will come easily. AI is not a silver bullet that 
will magically fix over a hundred years of carefully identi-
fied plant breeding challenges! Significant, sustained, and 
collaborative efforts will be required to realize any of the 
potential gains described above. Interdisciplinary training 
and interdisciplinary teams spanning computer science, 
plant biology, breeding, data science, and other areas are 
vital to addressing agricultural challenges effectively (Inter-
disciplinary Plant Science Consortium 2023). Additionally, 
ongoing investment in infrastructure, data governance, and 
ethical AI use is crucial for ensuring data quality, security, 
and sustainability (Dara et al. 2022).
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