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Abstract
High-throughput image-phenotyping promises to accelerate the rate of genetic

improvement in plant breeding through varietal selections informed by longitudinal

growth models. To facilitate routine analyses and to drive breeding decisions, data

integration is critical for effective management of germplasm, field experiment

design, phenotyping, tissue sampling, genotyping, aerial-phenotyping campaigns,

image files, and geo-spatial information. To this end, ImageBreed provides a software

solution for end-to-end image-based phenotyping integrated into the Breedbase plant

breeding system. ImageBreed provides open-source orthophotomosaic construction

for raw image captures from standard color cameras and from the MicaSense Red-

Edge multispectral camera. Additionally, previously assembled orthophotomosaic

raster images can be uploaded. Orthophotomosaic images allow for streamlined

extraction of plot-polygon images; however, ImageBreed plot-polygon images

can also be extracted directly from raw aerial image captures. A web–database

interface streamlines assignment of plot-polygon images from the orthophoto-

mosaic or raw aerial-captures to the field experiment design. Image processes

spanning Fourier-transform filtering, thresholding, and vegetation index masking

are applied to reduce noise in extracted phenotypes. Summary-statistic phenotypic

values are extracted for every observed plot-polygon image using a structured

ontology. Plot-polygon images are queryable against genotypic, phenotypic, and

experimental design information for training of machine learning models and

Abbreviations: API, application programming interface; CNN, convolutional neural network; FT-HPF, Fourier transform high-pass filter; FT-LPF, Fourier

transform low-pass filter; ND, Chado Natural Diversity Database Schema; NDRE, normalized difference red-edge vegetation index; NDVI, normalized

difference vegetation index; TGI, triangular greenness index; UAV, unoccupied aerial vehicle; VARI, visible atmospherically resistant index.
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for driving breeding decisions in varietal advancement. ImageBreed is publicly

available at http://imagebreed.org and built on the open-source Breedbase system

(https://github.com/solgenomics/sgn); all image-processing scripts are available at

https://github.com/solgenomics/DroneImageScripts and via a Docker image. All

data deposited in http://imagebreed.org are publicly available for longitudinal model

training and for driving future breeding decisions.

1 INTRODUCTION

The emergence of high-throughput aerial-phenotyping

allows for near real-time evaluation of large numbers

of genotypes, significantly impacting the field of plant

phenomics (Ninomiya, Baret, & Cheng, 2019). Several

studies have demonstrated the potential benefit of aerial-

phenotyping in plant breeding across a range of crop

species (Thorp, Thompson, Harders, French, & Ward,

2018; Krause, et al. 2019). However, routine use for breed-

ing decisions requires rapid data turnaround and image

processing remains a significant bottleneck in breeding

programs.

Unoccupied aerial vehicles (UAVs) and occupied aircraft

mounted with multispectral and color-image cameras now

frequently fly over agricultural field experiments. For con-

venience in plot-polygon extraction, the raw image captures

can be assembled into an orthophotomosaic image (Amer-

ican Society of Civil Engineers, 1994; Shi et al., 2016).

Open-source software, such as the OpenCV computer-vision

library, and commercial products are available to perform

the orthophotomosaic assembly; however, these methods are

either highly technical or expensive (Bradski, 2000; Culjak,

Abram, Pribanic, Dzapo, & Cifrek, 2012; Rublee, Rabaud,

Konolige, & Bradski, 2011). Alternatively, ImageBreed per-

forms orthophotomosaic assembly in a free, streamlined inter-

face designed for phenotypic value extraction in the context of

plant breeding. Furthermore, ImageBreed allows researchers

to bypass orthophotomosaic assembly in order to extract plot-

polygons directly from raw aerial image captures. Figure 1

provides an overview of the primary dashboard interface. A

user guide for Breedbase is available at https://solgenomics.

github.io/sgn/ with information regarding ImageBreed in the

“Managing Image Data for Phenotyping” section in the sup-

plemental information.

2 MATERIALS AND METHODS

ImageBreed is implemented within the codebase of Breed-

base, which is an open-source web–database for managing

germplasm, field experiment design, tissue sampling,

phenotypic, and genotypic information; it is currently used

by many plant breeding communities, including https:

//cassavabase.org and https://solgenomics.net (Fernandez-

Pozo, Menda, & Edwards, 2014). Breedbase employs the

Chado database schema, the Natural Diversity (ND) module,

and controlled vocabulary driven data models, allowing for a

highly extensible system (Jung et al., 2011; Mungall, Emmert,

& The FlyBase Consortium, 2007). Figure 2 presents the

primary relational database schema. Ontologies are used

for annotating phenotypic values and images within Breed-

base (Shrestha et al., 2012). The supplemental information

contains the image-phenotyping ontologies.

Breedbase, and subsequently ImageBreed, is written in

Perl and connects to a PostgreSQL database; the software is

open source (https://github.com/solgenomics/sgn). Develop-

ment of Breedbase is ongoing and uses Github as a repos-

itory for tracking issues and new features. RESTful end-

points are constructed using the Catalyst web-framework

and constitute the primary means of communication between

Breedbase’s JavaScript based web-interface and the database.

The supplemental information contains the complete Image-

Breed web–application programming interface (API) spec-

ification. All image processes are performed using Python

scripts that interface with the OpenCV library (https://

github.com/opencv/opencv); MicaSense open-source scripts

are used for orthophotomosaic assembly of RedEdge camera

5-band multispectral captures (https://github.com/micasense/

imageprocessing). The image-processing scripts are available

with a Docker image for standalone use (https://github.com/

solgenomics/DroneImageScripts).

2.1 Field experiments

Prior to processing aerial images, the field experiment must

first be saved in the database. The field experiment represents

the design with which accessions are distributed among

experimental field plots in a given field location. More infor-

mation on field experiments is available in the Breedbase

documentation (https://solgenomics.github.io/sgn/) in the

“Managing Field Trials” section. Importantly, Breedbase

supports the Plant Breeding API (BrAPI) standard for

http://imagebreed.org
https://github.com/solgenomics/sgn
https://github.com/solgenomics/DroneImageScripts
http://imagebreed.org
https://solgenomics.github.io/sgn/
https://solgenomics.github.io/sgn/
https://cassavabase.org
https://cassavabase.org
https://solgenomics.net
https://github.com/solgenomics/sgn
https://github.com/opencv/opencv
https://github.com/opencv/opencv
https://github.com/micasense/imageprocessing
https://github.com/micasense/imageprocessing
https://github.com/solgenomics/DroneImageScripts
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representing field experiments and associated metadata

including phenotypic records (Selby et al., 2019). Once

the field experiment is saved, aerial imaging campaigns

can be uploaded for the field experiment and then plot-

polygon images can be associated with their respective field

experiment plots.

2.2 Image input

The starting point in ImageBreed is either (a) upload of

raw image captures (.tiff) from standard color cameras or

from the Micasense Rededge 5-band multispectral camera, or

(b) upload of previously stitched raster images (.PNG, .JPG).

When starting with raw image captures, a compressed (.zip)

archive is uploaded; the maximum upload size is currently

2 GB. Depending on user input, the raw image captures are

assembled into an orthophotomosaic and saved as a PNG

raster image or the raw image captures are saved as PNG

images and used directly for plot-polygon assignment. The

use of previously stitched raster images facilitates use of any

camera instrument, granted the image is smaller than 1 GB

and meets the spectral category conditions defined below.

Imaging campaigns are saved and denoted by spectral

type as either blue (450–520 nm), green (515–600 nm), red

(600–690 nm), red-edge (690–750 nm), near-infrared (NIR)

(780–3,000 nm), mid-infrared (MIR) (3,000–50,000 nm), far-

infrared (FIR) (50,000–1,000,000 nm), or thermal-infrared

(thermal IR) (9,000–14,000 nm) (Iso, 2007). If the image

spectrum is not known precisely, options exist for black-and-

white or RGB color image. Each spectral category should only

be used once in a given aerial imaging campaign; for example,

when uploading imaging campaigns for the MicaSense Red-

edge 5-band camera, the images should be uniquely tagged

as blue, green, red, red-edge, and near-infrared. In addition

to assigning a spectral category, users must provide a name

and a description for each uploaded imaging campaign. As

the system matures, it is expected this information can be

automatically extracted from the uploaded image headers to

facilitate the upload process. Note that uploading several pre-

viously stitched orthophotomosaic image bands requires that

the bands are perfectly superimposable and of equal size;

orthophotomosaic stitching software generally accomplishes

this by default.

2.3 Image processing

Noise in aerial-phenotyping imagery can stem from the cam-

era and environmental conditions. To minimize camera and

software-induced white noise, ImageBreed applies non-local

means denoising (Buades, Coll, & Morel, 2011). In signal

processing, the Fourier transform (FT) can remove noise

Core Ideas
• A pipeline for phenotype extraction from aerial

images in agricultural experiments.

• ImageBreed’s web–database interface allows for

data standardization and sharing.

• Ontology based phenotype and image annotation

allows for stable data representation.

• Breedbase stores aerial images alongside experi-

mental phenotypic and genotypic data.

• Open-source orthophotomosaic construction for

multispectral and standard imagery.

via high-pass filters (FT-HPF) or low-pass filters (FT-LPF)

(Shaikh, Choudhry, & Wadhwani, 2016). ImageBreed per-

forms FT-HPF to remove the lowest 20, 30, and 40 frequen-

cies from images. ImageBreed performs magnitude threshold-

ing on the high and low tails of the pixel distribution to remove

noise pixels from images (Pandian, Ciulla, Mark Haacke,

Jiang, & Ayaz, 2008). Furthermore, ImageBreed minimizes

background soil pixels present in plot-polygon images by

applying the following vegetation indices (VIs) as masks:

normalized difference vegetation index (NDVI), triangular

greenness index (TGI), visible atmospherically resistant index

(VARI), and normalized difference red-edge vegetation index

(NDRE) (Hunt et al., 2013; Robinson et al., 2017). Custom

VIs, such as the soil-adjusted vegetation index (SAVI) (Huete,

1988), can be modularly added in the source code. All images

are annotated using controlled vocabularies to account for the

specific combination of processes applied.

Application of denoising, thresholding, FT-HPF, and VI

calculation for a 5,000 × 6,000 pixel orthophotomosaic image

containing 500 experimental field plots takes approximately

2 min on an E5-2660v2 2.2 GHz workstation with a Quadro

K5000 GPU and 256 GB RAM; however, plot-polygon pro-

cessing can take approximately 30 min to complete. Plot-

polygon processing crops and saves individual plot-images for

all uploaded image bands to ensure fast queries during down-

stream analyses. The hardware specifications above are used

to run the public ImageBreed instance http://imagebreed.org

locally; however, a GPU is not required, and a minimum

of 8 GB RAM ensures performant functionality. Disk stor-

age space is required for the database, saved images, and

archived files; storage requirements are dependent on the scale

of the project.

2.4 Phenotype extraction

Extraction of phenotypic values from aerial imagery relies

on assigning geo-spatial plot-polygons to each plot in the

http://imagebreed.org
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F I G U R E 1 ImageBreed Dashboard Overview. (1) Upload raw image captures in a compressed file (.zip) for use of the raw image captures

directly or for orthophotomosaic assembly, or upload previously stitched raster orthophotomosaic imagery. Expanded window shows all aerial image

actions. (2) Dashboard shows all field trials and uploaded imaging campaigns in collapsible sections. Two imaging campaigns,

2017_NYH2_06122017 and 2017_NYH2_08172017, are shown for the 2017_NYH2 field experiment of maize hybrids. (3) Follow standard

processes to manually create templates for assignment of plot-polygon images to the field experiment design. Blue button is shown only when the

standard process has not yet been completed. (4) Expanded window showing the 2017_NYH2_08172017 imaging event with its metadata including

days after planting and growing degree days. (5) Uploaded multispectral image bands are displayed under the imaging event in collapsible sections.

Shown is an image band tagged as near-infrared (780-3000 nm). All shown images originate from this uploaded image band. (6) Resulting images

from standard process rotation and cropping of the relevant field from the uploaded image band are listed in display. (7) Resulting plot-polygon

images from standard process are shown within collapsible sections. Highlighting 500 NIR plot-polygon images in an expanded window. Also shown

are 500 thresholded NIR plot-polygon images. (8) Export phenotypic values from plot-polygon images for analyses and model training. Current and

future ImageBreed features provide prediction of end-of-season traits with statistical and machine learning models

field experiment design. The assigned plot-polygons are

generally square-rectangles of equal size and shape for all

experimental field plots. Software such as QGIS can create

plot-polygon representations (Andrade-Sanchez et al., 2014;

QGIS Development Team 2017); however, ImageBreed

provides a standardized, manual interface for performing the

plot-polygon assignment by clicking the four corners of the

field experiment and minimally specifying the number of

experimental plot grid rows and columns. ImageBreed makes

no assumptions on whether the uploaded raw image captures

or orthophotomosaic are georeferenced in an effort to be

as flexible as possible. Future work will allow previously

used plot-polygon templates to be rescaled and applied onto

new aerial imaging campaigns through a point and click

interface. ImageBreed provides point and click functions

for copy–pasting plot-polygon templates and for removing

specific polygons from consideration, allowing flexibility

for templating even the most irregularly oriented field

layouts. Plot-polygon images are then cropped out from the

orthophotomosaic, annotated with the type of image and

process applied, and stored as an entry in a relational database

with association to the respective experimental plot in the

field design and with association to the originating aerial-

phenotyping event. For a detailed walk-through please consult

the “Managing Image Data for Phenotyping” section in the

Breedbase documentation https://solgenomics.github.io/sgn

or consult the supplemental information.

ImageBreed extracts and annotates phenotypic values from

plot-polygon images using ontologies. Table 1 summarizes

the extracted phenotypic traits and image processes applied;

https://solgenomics.github.io/sgn
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F I G U R E 2 Relational database schema of Breedbase as used by ImageBreed. The schema can be divided into the following subdivisions:

genotyping, phenotyping, stocks, projects, and images, with connector tables from the Natural Diversity (ND) module of the Chado database. Note

that image files are stored in the file system and only filenames and metadata are stored in the database

furthermore, the supplemental information contains the com-

plete image-phenotyping ontologies. Note that in Breedbase

phenotypic annotations can be composed as combinations

of ontologies; for instance, ‘Mean Pixel Value|NIR (780–

3,000 nm)|NIR Denoised Original Image|day 105’ is a phe-

notypic annotation describing a mean pixel value from an

original NIR image taken 105 d after planting. Composing

annotations in this way ensures uniqueness and queriabil-

ity of phenotypic values in the database. All plot-polygon

images and phenotypic values stored within ImageBreed

are public domain, allowing researchers to download and

build upon existing datasets; currently http://imagebreed.org

contains more than 500,000 plot-polygon images of maize

(Zea mays L.) and barley (Hordeum vulgare L.). Aggre-

gated data allows for training predictive longitudinal growth

models across crop species and field environments, driving

breeding decisions in varietal advancement (van Eeuwijk

et al., 2019; Xavier, Hall, Hearst, Cherkauer, & Rainey, 2017).

Current and future work is focused on developing pipelines

for training models to predict end-of-season traits from plot-

level images, extracted phenotypes, and genetic relationships

in Breedbase. Both longitudinal linear models and convolu-

tional neural networks (CNNs) in Keras TensorFlow 2.0 are

currently being developed.

SOFTWARE AVAILABILITY
ImageBreed is publicly available at http://imagebreed.org and

built on the open-source Breedbase system (https://github.

com/solgenomics/sgn); all image processing scripts are avail-

able at https://github.com/solgenomics/DroneImageScripts

and via a Docker image.

http://imagebreed.org
http://imagebreed.org
https://github.com/solgenomics/sgn
https://github.com/solgenomics/sgn
https://github.com/solgenomics/DroneImageScripts
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T A B L E 1 List of image processes applied to each plot-polygon image as well as a list of the extracted phenotypic values that ImageBreed

currently supports. Phenotype annotations are composed as combinations of these ontologies; for instance, ‘Mean Pixel Value|NIR

(780–3,000 nm)|NIR Denoised Original Image|day 105’ is a phenotypic annotation describing a mean pixel value from a denoised original NIR

image taken 105 d after planting. In this way the annotations ensure uniqueness and queriability across the database. Consult the supplemental

information for the complete ontologies used

Processes for phenotype extraction Methods and traits for phenotype extraction
Image processes applied Non-local means denoising

Fourier-transform high pass filtering of lowest 20 frequencies

Fourier-transform high pass filtering of lowest 30 frequencies

Fourier-transform high pass filtering of lowest 40 frequencies

Magnitude thresholding highest and lowest pixel values

NDVI threshold masking

NDRE threshold masking

TGI threshold masking

VARI threshold masking

Extracted phenotypic traits mean pixel value

total pixel sum

number of non-zero pixels

harmonic mean pixel value

median pixel value

pixel variance

minimum pixel value

maximum pixel value

minority pixel value

minority pixel count

majority pixel value

majority pixel count

pixel group count

Note. NDRE, normalized difference red-edge vegetation index; NDVI, normalized difference vegetation index; NIR, near-infrared; TGI, triangular greenness index; VARI,

visible atmospherically resistant index.
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