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Abstract

We introduce the R-package learnMET, developed as a flexible framework to enable a collection of analyses on multi-environment trial
breeding data with machine learning-based models. learnMET allows the combination of genomic information with environmental data
such as climate and/or soil characteristics. Notably, the package offers the possibility of incorporating weather data from field weather sta-
tions, or to retrieve global meteorological datasets from a NASA database. Daily weather data can be aggregated over specific periods of
time based on naive (for instance, nonoverlapping 10-day windows) or phenological approaches. Different machine learning methods for
genomic prediction are implemented, including gradient-boosted decision trees, random forests, stacked ensemble models, and multi-
layer perceptrons. These prediction models can be evaluated via a collection of cross-validation schemes that mimic typical scenarios
encountered by plant breeders working with multi-environment trial experimental data in a user-friendly way. The package is published
under an MIT license and accessible on GitHub.
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Introduction
Large amounts of data from various sources (phenotypic records
from field trials, genomic or omics data, environmental informa-
tion) are regularly gathered as part of multi-environment trials
(MET). The efficient exploitation of these extensive datasets has
become of utmost interest for breeders to address essentially two
objectives: (1) accurately predicting genotype performance in fu-
ture environments; (2) untangling complex relationships between
genetic markers, environmental covariables (ECs), and pheno-
types to better understand the pervasive phenomenon of
genotype-by-environment (G � E) interaction.

Many R packages have recently been developed that allow to
implement genomic prediction models accounting for G � E
effects using mixed models: BGLR (Pérez and de Los Campos
2014), sommer (Covarrubias-Pazaran 2016), Bayesian Genomic
Genotype � Environment Interaction (BGGE) (Granato et al. 2018),
Bayesian Multi-Trait Multi-Environment for Genomic Selection
(BMTME) (Montesinos-López et al. 2019), bWGR (Xavier et al. 2019),
EnvRtype (Costa-Neto, Galli, et al. 2021), and MegaLMM (Runcie
et al. 2021). BGGE presents a speed advantage compared to BGLR,
that is explained by the use of an optimization procedure for
sparse covariance matrices, while BMTME additionally exploits
the genetic correlation among traits and environments to build
linear G � E models. EnvRtype further widens the range of oppor-
tunities in Bayesian kernel models with the possibility to use

nonlinear arc-cosine kernels aiming at reproducing a deep

learning approach (Cuevas et al. 2019; Costa-Neto, Fritsche-Neto,

et al. 2021), and to harness environmental data retrieved by the

package.
While Bayesian approaches have been successful at dramati-

cally improving predictive ability in multi-environment breeding

experiments (Cuevas et al. 2017, 2019; Costa-Neto, Fritsche-Neto,

et al. 2021), data-driven machine learning algorithms represent

alternative predictive modeling techniques with increased flexi-

bility with respect to the form of the mapping function between

input and output variables. In particular, nonlinear effects in-

cluding gene � gene and genotype � environment (G � E) interac-

tions can be captured with machine learning models (Ritchie

et al. 2003; McKinney et al. 2006; Crossa et al. 2019; Westhues et al.

2021). G � E interactions are of utmost interest for plant breeders,

especially when they present a crossover type, because the latter

implies a change in the relative ranking of genotypes across dif-

ferent environments. Breeders generally cope with G�E by either

(1) focusing their program on wide adaptation of cultivars over a

target population of environments, from which follows that the

developed varieties are not the best ones for a given environment,

and positive G�E interactions are not exploited, or (2) identifying

varieties that are the best adapted to specific environments

(Bernardo 2002). Enhancing the modeling of genotype-by-

environment interactions, by the inclusion of environmental
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covariates related to critical developmental stages, also resulted
in an increase of predictive ability in many studies using MET
datasets (Heslot et al. 2012; Monteverde et al. 2019; Rincent et al.
2019; Costa-Neto, Fritsche-Neto, et al. 2021).

In this article, we describe the R-package learnMET and its
principal functionalities. learnMET provides a pipeline to (1) facil-
itate environmental characterization and (2) evaluate and com-
pare different types of machine learning approaches to predict
quantitative traits based on relevant cross-validation (CV)
schemes for MET datasets. The package offers flexibility by
allowing to specify the sets of predictors to be used in predictions,
and different methods to process genomic information to model
genetic effects.

To validate the predictive performance of the models, differ-
ent CV schemes are covered by the package, that aim at address-
ing concrete plant breeding prediction problems with multi-
environment field experiments. We borrow the same terminology
as in previous related studies (see Burgue~no et al. 2012; Jarqu�ın
et al. 2014, 2017), as follows: (1) CV1: predicting the performance
of newly developed genotypes (never tested in any of the environ-
ments included in the MET); (2) CV2: predicting the performance
of genotypes that have been tested in some environments but
not in others (also referred to as field sparse testing); (3) CV0: pre-
dicting the performance of genotypes in new environments, i.e.
the environment has not been tested; and (4) CV00: predicting
the performance of newly developed genotypes in new environ-
ments, i.e. both environment and genotypes have not been ob-
served in the training set. For CV0 and CV00, four configurations
are implemented: leave-one-environment-out, leave-one-site-
out, leave-one-year-out, and forward prediction.

Methods
Installation and dependencies
Using the devtools package (Wickham et al. 2021), learnMET can
be easily installed from GitHub and loaded (Box 1).Dependencies
are automatically installed or updated when executing the com-
mand above.

Real multi-environment trial datasets
Three toy datasets are included with the learnMET package to il-
lustrate how input data should be provided by the user and how
the different functionalities of the package can be utilized.

Rice datasets
The datasets were obtained from the INIA’s Rice Breeding Program
(Uruguay) and were used in previous studies (Monteverde et al.
2018, 2019). We used phenotypic data for three traits from two
breeding populations of rice (indica, composed of 327 elite breeding
lines; and japonica, composed of 320 elite breeding lines). The two
populations were evaluated at a single location (Treinta y Tres,
Uruguay) across multiple years (2010–2012 for indica and 2009–
2013 for japonica) and were genotyped using genotyping-by-
sequencing (GBS) (Monteverde et al. 2019). ECs, characterizing three
developmental stages throughout the growing season, were di-
rectly available. More details about the dataset are given in
Monteverde et al. (2018).

Maize datasets
A subset of phenotypic and genotypic datasets, collected and
made available by the G2F initiative (www.genomes2fields.org),
were integrated into learnMET. Hybrid genotypic data were com-
puted in silico based on the GBS data from inbred parental lines.
For more information about the original datasets, please refer to
AlKhalifah et al. (2018) and McFarland et al. (2020). In total, pheno-
typic data, collected from 22 environments covering 4 years
(2014–2017) and 6 different locations in American states and
Canadian provinces, are included in the package.

Running learnMET
learnMET can be implemented as a three-step pipeline. These are
described next.

Step 1: specifying input data and processing parameters
The first function in the learnMET pipeline is create_METData()
(Box 2). The user must provide genotypic and phenotypic data, as
well as basic information about the field experiments (e.g. longi-
tude, latitude, planting, and harvest date). Missing genotypic
data should be imputed beforehand. Climate covariables can be
directly provided as day-interval-aggregated variables, using the
argument climate_variables. Alternatively, in order to compute

Box 1. Install learnMET

> devtools::install_github(“cjubin/learnMET”)
> library(learnMET)

Box 2. Integration of input data in a METData list object

Case 1: ECs directly provided by the user
> library(learnMET)
> data(geno_indica)
> data(map_indica)
> data(pheno_indica)
> data(info_environments_indica)
> data(env_data_indica)
> METdata_indica <- create_METData(
geno ¼ geno_indica,
map ¼map_indica,
pheno ¼ pheno_indica,
climate_variables ¼ climate_variables_indica,
info_environments ¼ info_environments_indica,
compute_climatic_ECs ¼ FALSE,
path_to_save ¼“/learnMET_analyses/indica”)
Case 2: daily climate data automatically retrieved and ECs
calculated via the package
> data(geno_G2F)
> data(pheno_G2F)
> data(map_G2F)
> data(info_environments_G2F)
> data(soil_G2F)
> METdata_g2f <- create_METData(
geno ¼ geno_G2F,
pheno ¼ pheno_G2F,
map ¼map_G2F,
climate_variables ¼ NULL,
raw_weather_data ¼ NULL,
compute_climatic_ECs ¼ TRUE,
info_environments ¼ info_environments_G2F,
soil_variables ¼ soil_G2F,
path_to_save ¼“/learnMET_analyses/G2F”)
Note: code example to use in-field daily weather data pro-
vided at https://cjubin.github.io/learnMET/articles/vignette_
getweatherdata.html
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weather-based covariables, based on daily weather data, the
user can set the compute_climatic_ECs argument to TRUE, and
two possibilities are given. The first one is to provide raw daily
weather data (with the raw_weather_data argument), which will
undergo a quality control with the generation of an output file
with flagged values. The second possibility, if the user does
not have weather data available from measurements (e.g.
from an in-field weather station), is the retrieval of daily
weather records from the NASA’s Prediction of Worldwide
Energy Resources (NASA POWER) database (https://power.larc.
nasa.gov/), using the package nasapower (Sparks 2018).
Spatiotemporal information contained in the info_environments
argument is required. Note that the function also checks which
environments are characterized by in-field weather data in the
raw_weather_data argument, in order to retrieve satellite-based
weather data for the remaining environments without in-field
weather stations. An overview of the pipeline is provided in
Fig. 1.

Some covariates are additionally computed, based on the daily
weather data, such as vapor pressure deficit or the reference
evapotranspiration using the Penman-Monteith (FAO-56) equa-
tion. The aggregation of daily information into day-interval-
based values is also carried out within this function. Four meth-
ods are available and should be specified with the argument
method_ECs_intervals: (1) default: use of a definite number of inter-
vals across all environments (i.e. the window length varies
according to the duration of the growing season); (2) use of day-
windows of fixed length (i.e. each window spans a given number
of days, which remains identical across environments), that can
be adjusted by the user; (3) use of specific day intervals according
to each environment provided by the user, which should corre-
spond to observed or assumed relevant phenological intervals;
and (4) based on the estimated crop growth stage within each en-
vironment using accumulated growing degree-days in degrees
Celsius.

Besides weather-based information, soil characterization
for each environment can also be provided given the soil_variables
argument. The output of create_METData() is a list object of class

METData, required as input for all other functionalities of the
package.

Machine learning-based models implemented
Different machine learning-based regression methods are
provided as S3 classes in an object-oriented programming
style. These methods are called within the pipeline of the
predict_trait_MET_cv() function, that is presented in the following
section. In particular, the XGBoost gradient boosting library

(Chen and Guestrin 2016), the Random Forest algorithm (Breiman
2001), stacked ensemble models with Lasso regularization as
meta-learners (Van der Laan et al. 2007), and multilayer percep-
trons (MLP) using Keras (Chollet et al. 2015) are implemented as
prediction methods. In this section, we briefly present how these

machine learning algorithms work.
Gradient-boosted decision trees (GBDT) can be seen as an ad-

ditive regression model, where the final model is an ensemble of
weak learners (i.e. a regression tree in this case), in which each
base learner is fitted in a forward sequential manner (Friedman
2001). Considering a certain loss function (e.g. mean-squared er-

ror for regression), a new tree is fitted to the residuals of the prior
model (i.e. an ensemble of trees) to minimize this loss function.
Then, the previous model is subsequently updated with the cur-
rent model. From this definition, it becomes clear that GBDT and
Random Forest models strongly differ from each other, since for

GBDT, trees are built conditional on past trees, and the trees con-
tribute unequally to the final model (Kuhn et al. 2013).

In contrast, in Random Forest algorithms, trees are created in-
dependently from each other, and results from each tree are only
combined at the end of the process. The concept of GBDT was
originally developed by Friedman (2001). In learnMET, a set of pre-

diction models, denoted xgb_reg and rf_reg, is proposed that use
the XGBoost algorithm or the Random Forest algorithm, respec-
tively, with different input variables.

An MLP consists of one input layer, one or more hidden layers,
and one output layer. Each layer, with the exception of the final

output layer, includes a bias neuron (i.e. a constant value that
acts like the intercept in a linear equation and is used to adjust

Fig. 1. Overview of the pipeline regarding integration of weather data using the function create_METData() within the learnMET package. The blue circle
signals the first step of the process, when the function is initially called. The blue boxes indicate how the arguments of the function should be given,
according to the type of datasets available to the user. The green boxes indicate a task which is run in the pipeline via internal functions of the package.
The red circle signals the final step, when the METData object is created and contains environmental covariates. Details on the quality control tests
implemented on daily weather data are provided at https://cjubin.github.io/learnMET/reference/qc_raw_weather_data.html, and on the methods to
build ECs based on aggregation of daily data at https://cjubin.github.io/learnMET/reference/get_ECs.html.
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the output) and is fully connected to the next layer. Here, the first
hidden layer receives the marker genotypes and the ECs as input,
computes a weighted linear summation of these inputs (i.e.
z ¼W> � Xþ b, where X represent the input features, W> the vec-
tor of weights, and b the bias), and transforms the latter with a
nonlinear activation function fðzÞ, yielding the output of the
given neuron. In the next hidden layers, each neuron (also named
node) in one layer connects with a given weight to each neuron in
the consecutive layer. The last hidden layer is generally con-
nected with a linear function to the output layer that consists of
a single node. In MLP, learning is done via backpropagation: the
network makes a prediction for each training instance, calculates
the error associated with this prediction, estimates the error con-
tribution from each connection at each hidden layer by iterating
backward from the last layer (reverse pass), and finally changes
the connection weights to decrease this error, usually using gra-
dient descent step (Géron 2019). For more details about deep
learning methods in genomic prediction, we refer to the review
written by Pérez-Enciso and Zingaretti (2019). In learnMET, a set of
prediction models named DL_reg, are proposed that apply MLP
models with different input variables.

Stacked models can be understood as an ensemble method
that exploits the capabilities of many well-working models
(called base learners) on a classification or regression task. The
theoretical background of this method was originally proposed
by Breiman (1996), and further developed by Van der Laan et al.
(2007). In the first step, different individual base learners are fit-
ted to the same training set resamples (typically generated via
CV), and potentially using different sets of predictor variables or
different hyperparameter settings. Then, the predictions of the
base learners are used as input to predict the output by fitting a
regularization method, such as Lasso, on the cross-validated pre-
dictions. Hence, the final model has learned how to combine the
first-level predictions of the base learners, and this stacked en-
semble is expected to achieve similar or better results than any
of the base learners (Van der Laan et al. 2007). This implies also
that some weak learners, trained in the first stage, are generally
excluded by variable selection from the resulting ensemble
model if their predictions are highly correlated with other mod-
els, or irrelevant for predicting the trait of interest. In learnMET,
prediction models named stacking_reg apply stacked ensemble
models with different base learners and input variables. For in-
stance, stacking_reg_3 combines a support vector machine regres-
sion model fitted to the ECs, an elastic net model fitted to the
SNPs data, and a XGBoost model using as features the 40
genomic-based PCs and the ECs. The stacked model was designed
to embrace individual learners as diverse as possible, in order to
improve the likelihood that the predictions of the different mod-
els are different from each other, and that the meta learning al-
gorithm really benefits from combining these first-level
predictions. Regularized regression methods are widely used for
genomic selection (Zou and Hastie 2005; de los Campos et al.
2013), thus our choice to incorporate Elastic Net as an individual
learner to estimate the SNPs effects.

Step 2: model evaluation through cross-validation
The second function in a typical workflow is predict_trait_MET_cv()
(Box 3). The goal of this function is to assess a given prediction
method with a specific CV scenario that mimic concrete plant
breeding situations.

When predict_trait_MET_cv() is executed, a list of training/test
splits is constructed according to the CV scheme chosen by the
user. Each training set in each sub-element of this list is

processed (e.g. standardization and removal of predictors with
null variance, feature extraction based on principal component
analysis), and the corresponding test set is processed using the
same transformations. Performance metrics are computed on
the test set, such as the Pearson correlation between predicted
and observed phenotypic values (always calculated within the
same environment, regardless of how the test sets are
defined according to the different CV schemes), and the root
mean square error. Analyses are fully reproducible given that
seed and tuned hyperparameters are stored with the output of
predict_trait_MET_cv(). Note that, if one wants to compare models
using the same CV partitions, specifying the seed and modifying
the model would be sufficient.

The function applies a nested CV to obtain an unbiased gener-
alization performance estimate. After splitting the complete
dataset using an outer CV partition (based on either CV1, CV2,
CV0, or CV00 prediction problems), an inner CV scheme is applied
to the outer training dataset for optimization of hyperpara-
meters. Subsequently, the best hyperparameters are selected and
used to train the model using all training data. Model perfor-
mance is then evaluated based on the predictions of the unseen
test data using this trained model. This procedure is repeated for
each training-test partition of the outer CV assignments. Table 1
shows the different arguments that can be adjusted when exe-
cuting the CV evaluation.

Note that the classes we developed for preprocessing data and
for fitting machine learning-based methods use functions from
the tidymodels collection of R packages for machine learning
(Kuhn and Wickham 2020), such as Bayesian optimization to tune
hyperparameters (function tune_bayes()) or the package stacks. For
models based on XGBoost, the number of boosting iterations, the
learning rate, and the depth of trees represent important hyper-
parameters that are automatically tuned. Ranges of hyperpara-
meter values are predefined based on expert knowledge. Bayesian
optimization techniques use a surrogate model of the objective
function in order to select better hyperparameter combinations
based on past results (Shahriari et al. 2016). As more combinations
are assessed, more data become available from which this surro-
gate model can learn to sample new combinations from the
hyperparameter space that are more likely to yield an improve-
ment. This technique allows a reduction of the number of model
settings tested during the hyperparameter tuning.

Extracting evaluation metrics from the output
Once a model has been evaluated with a CV scheme, various
results can be extracted from the returned object, as shown in
Box 4, and plots for visualization of results are also saved in the
path_folder.

Box 3. Evaluation of a prediction method using a CV
scheme (i.e. METData object with phenotypic data)

> res_cv0_indica <- predict_trait_MET_cv(
METData ¼METdata_indica,
trait ¼“GC”,
prediction_method ¼“xgb_reg_1”,
cv_type ¼“cv0”,
cv0_type ¼“leave-one-year-out”,
seed¼ 100,
path_folder ¼“/project1/indica_cv_res/cv0”)
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Step 3: prediction of performance for a new test set
The third module in the package aims at implementing

predictions for unobserved configurations of genotypic and
environmental predictors using the function predict_trait_MET()

(Box 5). The user needs to provide a table of genotype IDs (e.g.
name of new varieties) with their growing environments (i.e. year

and location) using the argument pheno in the function

create_METData(). Genotypic data of the selection candidates to
test within this test set should all be provided using the geno ar-

gument. Regarding characterization of new environments, the

user can either provide a table of environments, with longitude,
latitude, and growing season dates, or can directly provide a table
of ECs that should be consistent with the ECs provided for the
training set. Environmental variables for the unobserved test set
should be provided or computed with the same aggregation
method (i.e. same method_ECs_intervals) as for the training set. To
build an appropriate model with learning parameters, able to
generalize well on new data, a hyperparameter optimization with
CV is conducted on the entire training dataset when using the
function predict_trait_MET().

This function can potentially be applied to harness historical
weather data and to obtain predictions across multiple years at a
set of given locations (de Los Campos et al. 2020), or to conjecture
about the best selection candidates to assess in field trials at spe-
cific locations. However, we emphasize the importance of both
environmental and genetic similarity between training and test
sets. If the selection candidates within the test set are not
strongly genetically related to the genotypes included in the
training set, or if the climatic conditions experienced in the test
set differ too much from the feature space covered within the
training set, the prediction results might not be trustworthy for
decision making.

The function analysis_predictions_best_genotypes() takes directly
the output of predict_trait_MET() and can be used to visualize the
predicted yield of the best performing genotypes at each of the
locations across years included in the test set.

Interpreting ML models
Compared to parametric models, ML techniques are often con-
sidered as black-boxes implementations that complicate the
task of understanding the importance of different factors (ge-
netic, environmental, management, or their respective interac-
tions) driving the phenotypic response. Therefore, various
methods have recently been proposed to aid the understanding
and interpretation of the output of ML models. Among these
techniques, some are model-specific techniques (Molnar 2022),
in the sense that they are only appropriate for certain types of
algorithms. For instance, the Gini importance or the gain-based
feature importance measures can only be applied for tree-based

Table 1. Description of the main arguments used with the
function predict_trait_MET_cv().

Function argument Description

METData An object created by the initial function
of the package create_METData().

trait Name of the trait to predict.
prediction_method String to name the trait to predict.
lat_lon_included Logical to use longitude and latitude as

predictor variables. FALSE by default.
yr_included Logical to use yr effect as dummy vari-

able. FALSE by default.
cv_type String indicating the CV scheme to use

among “cv0” (prediction of genotypes
in new environments), “cv00” (predic-
tion of new genotypes in new environ-
ments), “cv1” (prediction of new
genotypes), or “cv2” (prediction of in-
complete field trials). Default is “cv0.”

cv0_type String indicating the type of cv0 sce-
nario, among “leave-one-environ-
ment-out”, “leave-one-site-out”,
“leave-one-yr-out”, and “forward-pre-
diction.” Default is “leave-one-envi-
ronment-out.”

nb_folds_cv1 Integer for the number of folds to use in
the cv1 scheme, if selected.

repeats_cv1 Integer for the number of repeats in the
cv1 scheme, if selected.

nb_folds_cv2 Integer for the number of folds to use in
the cv2 scheme, if selected.

repeats_cv2 Integer for the number of repeats in the
cv2 scheme, if selected.

include_env_predictors Logical to indicate if ECs should be used
in predictions. TRUE by default.

list_env_predictors Vector of character strings with the
names of the environmental predic-
tors which should be used in predic-
tions. NULL by default, which means
that all environmental predictor vari-
ables are used.

seed Integer with the seed value. Default is
NULL, which implies that a random
seed is generated, used in the other
stages of the pipeline, and given as
output for reproducibility.

save_processing Logical to save the processing steps used
to build the model in a RDS file.
Default is FALSE.

path_folder String to indicate the full path where the
RDS file with results and plots gener-
ated during the analysis should be
saved.

num_pcs Optional argument. Integer to indicate
the number of PCs to derive from the
genotype matrix or from the genomic
relationship matrix (encouraged to
speed up CV with large datasets).

save_model Logical indicating whether the fitted
model for each training-test partition
should be saved. Default is FALSE.

Box 4. Extraction of results from returned object of class
met_cv

# Extract predictions for each test set in the CV scheme:
> pred_2010<- res_cv0_indica$list_results_cv[[1]]$prediction_df
> pred_2011<- res_cv0_indica$list_results_cv[[2]]$prediction_df
> pred_2012<- res_cv0_indica$list_results_cv[[3]]$prediction_df

# The length of the list_results_cv sub-element is equal to
the number of train/test sets partitions.

# Extract Pearson correlation between predicted and
observed values for 2010:
> cor_2010<- res_cv0_indica$list_results_cv[[1]]$cor_pred_obs

# Extract root mean square error between predicted and ob-
served values for 2011:
> rmse_2011 <- res_cv0_indica$list_results_cv[[2]]$rmse_
pred_obs

# Get the seed used:
> seed <- res_cv0_indica$seed_used
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methods (e.g. decision trees, Random Forests, gradient-boosted

trees), since it calculates how much a predictor variable can re-
duce the sum of squared errors in the child nodes, compared to

the parent node, across all splits for which this given predictor
was used. Feature importances are in this case scaled between 0
and 100.

Other model-agnostic interpretation techniques have been de-
veloped, that provide the advantage of being independent from
the original machine learning algorithm applied, thereby allow-
ing straightforward comparisons across models (Molnar 2022).
After shuffling the values of a given predictor variable, the value
of the loss function (e.g. root mean square error in regression
problems), estimated using the predictions of the shuffled data
and the observed values, can be used to obtain an estimate of the
permutation-based variable importance. Fisher et al. (2019) for-
mally defined the permutation importance for a variable j as fol-
lows: vipj

diff ¼ Lðy; f^ðXpermutedÞÞ � Lðy; f^ðXoriginalÞÞ, where Lðy; f^ðXÞÞ
is the loss function evaluating the performance of the model,
Xoriginal is the original matrix of predictor variables, and Xpermuted

is the matrix obtained after permuting the variable j in Xoriginal.
The reason behind this approach is that, if a predictor contributes
strongly to a model’s predictions, shuffling its values will result
in increased error estimates. On the other hand, if the variable is
irrelevant for the fitted model, it should not affect the prediction
error. It is recommended to repeat the permutation process to ob-
tain a more reliable average estimate of the variable importance
(Fisher et al. 2019; Molnar 2022). Another interesting aspect of
permutation-based variable importance is the possibility to cal-
culate it using either the training or the unused test set.
Computing variable importance using unseen data is useful to
evaluate whether the explanatory variables, identified as rele-
vant for prediction during model training, are truly important to
deliver accurate predictions, and whether the model does not
overfit. However, in the latter case, one needs to ensure that the
training and test set are sufficiently related. New data might be-
have very differently from the data used for training without im-
plying that the trained model is fundamentally wrong. The
function variable_importance_split() enables retrieving variable im-
portance, either with a model-specific method (via the package
vip proposed by Greenwell et al. 2020), when available, or based
on a permutation-based method (argument type, see Box 6), and
the calculation is made by default using the training set, but can
be achieved for the test set by setting the argument unseen_data
to TRUE.Accumulated local effects (ALE) plots, also model agnos-
tic, allow to examine the influence of a given predictor variable
on the model prediction, conditional on the predictor value
(Apley and Zhu 2020). Compared to partial dependence (PD) plots,
they provide the advantage of addressing the bias that emerges
when features are correlated. While predictions are computed
over the marginal distribution of predictor variables in the case
of PD plots (i.e. meaning that predictions of unrealistic instances
are considered), ALE plots offer a solution to this issue by consid-
ering the conditional distribution, thus avoiding to use predic-
tions of unrealistic training observations. To build an ALE plot,
the range of the explanatory variable is first split into equally
sized small windows, such as quantiles. For each window, the
ALE method only considers observations that show for this fea-
ture a value falling within the interval. Then, it computes model
predictions for the upper limit and for the lower limit of the inter-
val for these data instances, and calculates the difference in pre-
dictions. The changes of predictions are averaged within each
interval, which allows to block the impact of other features.
These average effects are then accumulated across all intervals
and centered at 0. The function ALE_plot_split() yields the ALE plot
for a given predictor variable. An example is provided in Box 6.

Box 5. Prediction of new observations using a training
set and a test set (i.e. phenotypic data not required)

# Create a training set composed of years 2014, 2015 and
2016:
> METdata_G2F_training <-
create_METData(
geno ¼ geno_G2F,
pheno¼ pheno_G2F[pheno_G2F$year %in% c(2014,2015,2016),],
map ¼map_G2F,
climate_variables ¼ NULL,
compute_climatic_ECs ¼ TRUE,
et0¼T, # Possibility to calculate reference evapotranspira-
tion with the package (if TRUE, elevation data should be
preferably added as a column in info_environments)
info_environments¼ info_environments_G2F[info_
environments_G2F$year %in% c(2014,2015,2016),],
soil_variables¼ soil_G2F[soil_G2F$year %in% c(2014,2015,2016),],
path_to_save ¼“/project1/g2f_trainingset”) # path where
daily weather data and plots are saved

# Create a prediction set (same default method to compute
ECs as above):
> METdata_G2F_new <-
create_METData(
geno ¼ geno_G2F,
pheno ¼ as.data.frame(pheno_G2F[pheno_G2F$year %in%
2017 , ] % >% dplyr::select(-pltht, -yld_bu_ac, -earht)),
map ¼map_G2F,
et0¼T,
climate_variables ¼ NULL,
compute_climatic_ECs ¼ TRUE,
info_environments¼ info_environments_G2F[info_
environments_G2F$year %in% 2017 , ],
soil_variables ¼ soil_G2F[soil_G2F$year %in% 2017 , ],
path_to_save ¼“/project1/g2f_testset”,
as_test_set ¼ T) # in order to provide only predictor variables
(no phenotypic data for the test set available) in pheno argu-
ment.

# Fitting the model to the training set and predicting the test
set
> results_list <- predict_trait_MET(
METData_training ¼METdata_G2F_training,
METData_new ¼METdata_G2F_new,
trait ¼“yld_bu_ac”,
prediction_method ¼“xgb_reg_1”,
use_selected_markers ¼ F,
save_model ¼ TRUE,
# save_model set to TRUE in order to retrieve subsequently
variable importance
lat_lon_included ¼ F,
year_included ¼ F,
num_pcs¼ 200,
include_env_predictors ¼ T,
seed¼ 100,
path_folder ¼“/project1/g2f_results_year_2017”
)
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Results and discussion
To illustrate the use of learnMET with METs datasets, we provide

here two example pipelines, both of which are available in the of-

ficial package documentation. The first one demonstrates an im-

plementation that requires no user-provided weather data, while

the second pipeline shows prediction results obtained based on

user-provided environmental data.

Retrieving meteorological data from NASA
POWER database for each environment
When running the commands for step 1 (Box 1, Case 2) on the

maize dataset, a set of weather-based variables (see documenta-

tion of the package) is automatically calculated using weather

data retrieved from the NASA POWER database. By default, the

method used to compute ECs uses a fixed number of day-

windows (10) that span the complete growing season within each

environment. This optional argument can be modified via the

argument method_ECs_intervals (detailed information about the

different methods can be found at https://cjubin.github.io/

learnMET/reference/get_ECs.html). The function summary() pro-

vides a quick overview of the elements stored and collected in

this first step of the pipeline (Box 7).Clustering analyses, that can

help to identify groups of environments with similar climatic

conditions and to identify outliers, were generated based on (a)

only climate data; (b) only soil data (if available); and (c) all envi-

ronmental variables together, for a range of values for K¼ 2 to 10

clusters (Fig. 2).

Benchmarking two prediction methods from
learnMET and a linear reaction norm model
Phenotypic traits were predicted by the reaction norm
model proposed by Jarqu�ın et al. (2014), thereafter denoted as
G-W-G � W, that account for the random linear effects of
the molecular markers (G), of the environmental covariates
(W), and of the interaction term (G � W), under the following
assumptions:

yij ¼ lþ gi þwj þ gwij þ eij;

with g � Nð0;Gr2
gÞ, where G ¼ XX0=p (with p being the number of

SNPs and X the scaled and centered marker matrix),
w � Nð0;Xr2

wÞ, where X ¼WW0=q (with q being the number of
ECs and W the scaled and centered matrix that contains the ECs),
gw � Nð0; ½ZgGZ0g�8Xr2

gw) where � denotes the Hadamard product
(cell by cell product), eij�

IIDNð0;r2
e Þ.

For additional details about the benchmark model, we refer to
the original publication of Jarqu�ın et al. (2014). We implemented this
model using BGLR (Pérez and de Los Campos 2014), for which the
MCMC algorithm was run for 20,000 iterations and the first 2,000
iterations were removed as burn-in using a thinning equal to 5.

Two prediction models proposed in learnMET were tested: (1)
xgb_reg_1, which is an XGBoost model that uses a certain number
of principal components (PCs) derived from the marker matrix
and ECs, as features and (2) stacking_reg_3. Although computa-
tionally more expensive than parametric methods, we paid atten-
tion to reasonable computational time (e.g. maximum of
13.3 hours to fit stacking_reg_3 model to n¼ 4,587 training instan-
ces with 10 CPUs).

We conducted a forward CV0 CV scheme, meaning that fu-
ture years were predicted when using only past years as the
training set. For the rice datasets, at least two years of data
were used to introduce variation in the EC matrix characteriz-
ing the training set (only one location was tested each year).
Year, location or year-location effects were not incorporated in
any of the linear and machine learning models, because we fo-
cused our evaluation on how the different models could effi-
ciently capture the effects of SNPs and ECs, and of SNP � EC
interaction effects.

Results from the benchmarking approach are presented in
Figs. 3 and 4. We have observed that the machine learning mod-
els are competitive with the linear reaction norm approach and
tend to outperform it, albeit not consistently, as the training set
size increases. Applied to small training set sizes, sophisticated
prediction models are likely not able to capture informative pat-
terns related to SNP � EC interactions, and linear models perform
better. Similarly, the root mean square error was generally re-
duced with the machine learning methods as the training set in-
creased (Fig. 4). Machine learning also performed better with the
G2F data that integrated multiple locations per year and was
therefore larger and probably more relevant to learn G�E pat-
terns than with the rice dataset. Therefore, we encourage users
to first evaluate whether their datasets are sufficiently large to le-
verage the potential of the advanced techniques proposed in this
package and whether the latter provide satisfying predictive abili-
ties in CV settings.

Model interpretation from a gradient-boosted
model fitted to the maize dataset
Figure 5a illustrates the permutation-based approach on the
maize dataset, and Fig. 5, b and c describe how two

Box 6. Retrieving variable importance using the fitted
model and the training data

> fitted_split <- results_list$list_results[[1]]

# Model-specific: variable importance based on the gain as
importance metric from the XGBoost model (via vip pack-
age)
> variable_importance <- variable_importance_split(
object ¼ fitted_split,
path_plot ¼“/project1/variable_imp_trset”,
type ¼“model_specific”)

# Model-agnostic: variable importance based on 10 permu-
tations
> variable_importance <- variable_importance_split(
object ¼ fitted_split,
path_plot ¼“/project1/variable_imp_trset”,
type ¼“model_agnostic”,
permutations¼ 10)

# Model-agnostic: accumulated local effects plot
> ALE_plot_split(fitted_split,
path_plot ¼“/project1/ale_plots,”
variable ¼”freq_P_sup10_2”)

Box 7. Summary method for class METData

> summary(METdata_g2f)
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Fig. 2. Output results from the create_METData() function. a) Cluster analysis using K-means algorithm (K¼ 4) to identify groups of similar environments
based on environmental data. b) Total within-cluster sum of squares as a function of the number of clusters. c) Average Silhouette score as a function
of the number of clusters. These methods can help users decide on the optimal number of clusters. Data used here are a subset of the Genomes to
Fields maize dataset (AlKhalifah et al. 2018; McFarland et al. 2020). Weather data were retrieved from NASA POWER database via the package
nasapower Sparks (2018). Plots are saved in the directory provided in the path_to_save argument.

8 | G3, 2022, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkac226/6705235 by guest on 05 O

ctober 2022



environmental variables (sum of photothermal time and fre-

quency of rainfall) influence the average prediction of maize

grain yield using ALE plots. We should stress that the size of the

dataset employed here is likely too small to make real inferences

about the relationship between the predictor variables and

the outcome (sharp drops observed at some feature values).

Our goal here is essentially to illustrate how these functions can

be used to gain insights into a model’s predictions using the

package.

Concluding remarks and future developments
learnMET was developed to make the integration of complex data-

sets, originating from various data sources, user-friendly. The

Fig. 3. Correlations between predicted and observed values for a forward prediction scenario using two machine learning models and a linear reaction
norm approach. a) Three traits predicted for two rice populations. Each year is predicted based on at least two past years of phenotypic data (one single
location). b) Grain yield predicted for the G2F dataset. GC (rice data), percentage of chalky kernels; GY (rice data), grain yield (kg/ha); PHR (rice data),
percentage of head rice recovery; GY (G2F), bushels per acre.
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package provides flexibility at various levels: (1) regarding the use

of weather data, with the possibility to provide on-site weather
station data, or to retrieve external weather data, or a mix of
both if on-site data are only partially available; (2) regarding how

time intervals for aggregation of daily weather data are defined;
(3) regarding the diversity of nonlinear machine learning
models proposed; (4) regarding options to provide manually

specified subsets of predictor variables (for instance, for

environmental features via the argument list_env_predictors in

predict_trait_MET_cv()).
To allow analyses on larger datasets, future developments of

the package should include parallel processing to improve the

scalability of the package and to best harness high performance

computing resources. Improvements and extensions of stacked

models and deep learning models are also intended, as we did

not investigate in-depth the network architecture (e.g. number of

Fig. 4. Root mean square error between predicted and observed values for a forward prediction scenario using two machine learning models and a
linear reaction norm approach. a) Three traits predicted for two rice populations. Each year is predicted based on at least two past years of phenotypic
data (one single location). b) Grain yield predicted for the G2F dataset. GC (rice data), percentage of chalky kernels; GY (rice data), grain yield (kg/ha);
PHR (rice data), percentage of head rice recovery; GY (G2F), bushels per acre.
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Fig. 5. Model interpretation methods applied on the model fitted to a subset of the G2F dataset from years 2014 to 2016 (17 environments included) with
xgb_reg_1 for the trait grain yield. a) Model-agnostic variable importance using 10 permutations. The top 40 most important predictor variables are
displayed, and the table containing results across all permutations for all variables is returned. ALE plots for (b) sum of photothermal time during the
1st day-interval of the growing season, and (c) the frequency of days with an amount of precipitation above 10 mm during the 2nd day-interval of the
growing season. Tick marks indicate the unique values observed for the given covariate in the training set.

C. C. Westhues et al. | 11

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkac226/6705235 by guest on 05 O

ctober 2022



nodes per layer, type of activation function, type of optimizer),
nor other types of deep learning models that might perform bet-
ter (e.g. convolutional neural networks). Finally, the package
could be extended to allow genotype-specific ECs, because the
timing of developmental stages differs across genotypes (e.g. due
to variability in earliness) and should ideally be taken into ac-
count.

Data availability
The software is available on GitHub at https://github.com/cjubin/
learnMET. Documentation and vignettes are provided at https://
cjubin.github.io/learnMET/. All scripts used to obtain the results
presented in this article can be found on GitHub at https://github.
com/cjubin/learnMET/tree/main/scripts\_publication.
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