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Abstract

Technology advances have made possible the collection of a wealth of genomic, environmental, and phenotypic data for use in plant
breeding. Incorporation of environmental data into environment-specific genomic prediction is hindered in part because of inherently high
data dimensionality. Computationally efficient approaches to combining genomic and environmental information may facilitate extension
of genomic prediction models to new environments and germplasm, and better understanding of genotype-by-environment (G � E) inter-
actions. Using genomic, yield trial, and environmental data on 1,918 unique hybrids evaluated in 59 environments from the maize
Genomes to Fields project, we determined that a set of 10,153 SNP dominance coefficients and a 5-day temporal window size for summa-
rizing environmental variables were optimal for genomic prediction using only genetic and environmental main effects. Adding marker-by-
environment variable interactions required dimension reduction, and we found that reducing dimensionality of the genetic data while
keeping the full set of environmental covariates was best for environment-specific genomic prediction of grain yield, leading to an increase
in prediction ability of 2.7% to achieve a prediction ability of 80% across environments when data were masked at random. We then
measured how prediction ability within environments was affected under stratified training-testing sets to approximate scenarios commonly
encountered by plant breeders, finding that incorporation of marker-by-environment effects improved prediction ability in cases where
training and test sets shared environments, but did not improve prediction in new untested environments. The environmental similarity
between training and testing sets had a greater impact on the efficacy of prediction than genetic similarity between training and test sets.

Keywords: genotype-by-environment interactions; multienvironment; genomic prediction; environmental covariates; dominance genetic
variance; shared data resource

Introduction
Genotype-by-environment (G� E) interactions occur when envi-
ronmental factors do not have the same effect on all genotypes,
such that the relative phenotypic differences among genotypes
vary across environments. G�E interactions are commonly ob-
served in complex phenotypes studied across all subfields of ge-
netics (Manolio et al. 2009; Lasky et al. 2015; Edwards 2016;
Krishnamurthy et al. 2017; Yang et al. 2017) and complicate the
understanding of genetic and genotypic effects. In plant breeding,
G�E represents a portion of phenotypic variance that hinders
broad-scale adaptation, but may be leveraged for development of
varieties with relatively better performance in the presence of
specific environmental pressures, for example, drought (Adee
et al. 2016) or salinity tolerance (Krishnamurthy et al. 2017). Plant
breeders have traditionally treated G�E as noise that hinders
stability across a wide target population of environments
(Comstock and Moll 1963), in part because of the challenge it

poses during the selection process. Identifying superior genotypes

in plant breeding programs is difficult because G�E interactions
can lead to the selection of genotypes based on performance in 1
or a small set of test environments in the early stages of a breed-
ing program that might have relatively poor performance in later

stage multienvironment trials (Crossa et al. 2017; Hickey et al.
2017). Without a good understanding of G�E interactions and
their impacts on performance in early-stage selections, G�E

interactions become a nuisance at later stages when promising
lines meet new stressors. This also poses a problem when breed-
ing for future environments, where climate change threatens to

alter the growing environments in ways that may not favor cur-
rent genetic backgrounds. To breed for future environments
where extreme weather events are likely to be more frequent,

leveraging G�E will may help to develop more resilient cultivars.
Over the last decade, genomic selection (GS) has become

widely used in both plant and animal breeding programs, in part
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due to the decreased cost of genomic data and increased compu-
tational power available for statistical modeling (Cooper et al.
2014; Hickey et al. 2017; Hammer et al. 2019; Voss-Fels et al.
2019). As technologies for capturing environmental data devel-
oped and became more cost effective for use in breeding pro-
grams, models have been proposed to integrate environmental
covariates into GS (Jarqu�ın et al. 2014; Saint Pierre et al. 2016;
Millet et al. 2019; Monteverde et al. 2019). These range across a
spectrum from extensively researched crop models that rely on
biological understanding of the developmental response of spe-
cific genotypes to changing environmental conditions (Pauli et al.
2016; Bustos-Korts et al. 2019), to reaction-norm models identify-
ing a few covariates that are posed to have important effects on
end point phenotypes (Burgue~no et al. 2012; Heslot et al. 2014;
Jarqu�ın et al. 2014; Crossa et al. 2016; Millet et al. 2019; Li et al.
2021), and to machine learning models that “learn” what covari-
ates are important to a given trait from a large amount of envi-
ronmental data based on assumptions of effect distributions
(Bandeira E Sousa et al. 2017; Cuevas et al. 2017, 2018;
Montesinos-López et al. 2018; Costa-Neto et al. 2021; Li et al.
2021). Inferences about the causes of G�E interactions may be
possible with crop physiology models but are difficult to make
from machine learning model results.

Phyisologically grounded crop models rely on extensive and
detailed experimentation to estimate model parameters (Bustos-
Korts et al. 2019; Hammer et al. 2019), which can provide high
predictive ability of genotypes used to train models in new envi-
ronments, but much lower prediction ability for new genotypes
not used in model training (Millet et al. 2019). These results sug-
gest that transferring information on crop growth models be-
tween populations remains challenging (Millet et al. 2019),
limiting their practicality to large-scale breeding programs, where
thousands of genotypes and environments may be present and
generating the data necessary to create crop growth models may
not be feasible (Hammer et al. 2019). Even when such models can
be used, computational power presents a challenge and parsi-
mony is often preferred to speed up modeling for real-time breed-
ing decisions (Hammer et al. 2019).

Reaction-norm and machine learning models provide simpler
alternatives for integrating both genomic and environmental
data for genomic prediction (GP), in part because these methodol-
ogies are relatively straightforward extensions of GS models that
handle environmental data and G�E interactions in ways analo-
gous to use of genomic marker data in GS (Crossa et al. 2016).
One caveat of many GP studies incorporating environmental data
into GxE modeling is that they tend to focus on relatively small
numbers of environments and genetic backgrounds, which may
not be representative of breeding programs that incorporate
more heterogeneity of genotypes or target population of environ-
ments. Predictive studies using both environmental and genomic
data sources have shown that use of G�E terms increase predic-
tive ability, but that the increase in predictive ability depends
greatly on phenotypic correlations between testing and training
environments (Bandeira E Sousa et al. 2017; Cuevas et al. 2018;
Monteverde et al. 2018). When covariances between training and
testing environments were close to 0 or negative, linear G�E
models had difficulty predicting phenotypic outcomes, but in
some cases more flexible kernel models were better able to ap-
proximate these environmental covariances and recover predic-
tion ability (Crossa et al. 2017; Cuevas et al. 2017, 2018). These
kernel models tend to be costly in memory requirements and
computational speeds, creating a significant barrier to entry for
small breeding programs with limited resources and large

programs requiring speedy selections (Isik et al. 2017; Cuevas
et al. 2018; Granato et al. 2018). Because of this, more computa-
tionally efficient methods that may make prediction models
more useful for making breeding decisions.

Rogers et al. (2021) curated phenotypic, environmental, and
genomic data involving 1,918 maize hybrids tested in up to 65
environments from the Genome to Fields (G2F) project in years
2014–2016. Environmental covariates were related to covariances
between yield performances in different environments in this
data set (Rogers et al. 2021), thus we hypothesize that
environment-specific GP could be aided by the inclusion of envi-
ronmental covariates and G�E interactions models. Because
some environmental data are collected many times per environ-
ment, integrating these data into GP models require a choice of
appropriate resolution of windows over which environmental
data are summarized. Higher resolution may help prediction abil-
ity, but it increases computational demand. Similarly, very high-
resolution genetic marker data may improve prediction ability
but there is a tradeoff between prediction ability and computa-
tional resource requirements when increasing marker density.
Combining genetic marker coefficients and environmental vari-
able coefficients to create G�E interaction coefficients increase
the number of model parameters by the product of the 2 compo-
nents; therefore, identifying an appropriate balance between the
density of genetic and environmental factors and the memory
demands and computational speed of prediction models is im-
portant. One proposed solution to this problem is the use of envi-
ronmental indexing over an optimal window, which has been
successful in the case of maize flowering time where a small set
of environmental covariates have large effects on phenotypic
outcomes (Li et al. 2018). This approach has used for traits in sev-
eral species where environmental factors with large influence on
phenotypes are well understood (Li et al. 2021). Such approaches
are not easily generalizable to prediction of grain yield, which is
influenced by a large number of environmental factors and
exhibits substantial GxE interaction variance.

Jarqu�ın et al. (2020) utilized the first 2 years of G2F hybrid yield
trial data to test reaction-norm models involving 1-h windows of
environmental data and genomic relationship matrices to model
general and specific combining ability genetic components.
These models involved 25,152 environmental covariables sum-
marized into an environmental covariance matrix, which
assumes that all environmental covariates contribute equally to
the relationships between the environments (Jarqu�ın et al. 2020).
This approach for including G�E interactions did not achieve
consistent improvement in predictive ability for grain yield
(Jarqu�ın et al. 2020). Here, we approach environment-specific pre-
diction in a way that allows marker-environmental variable
interactions to have different weights in prediction models, as
learned from the data, for greater flexibility in modeling the cova-
riances between environments.

The objectives of this study were to (1) optimize genetic
marker and environmental covariable data sets to balance GP
ability against model dimensionality (as a proxy for computa-
tional resource requirements), and (2) measure the effect on pre-
diction ability of different prediction models when training and
testing data sets were stratified by genetic or environmental rela-
tionships, to reflect real world prediction scenarios encountered
by plant breeders. We compared the prediction ability of genetic
marker data sets coded to represent additive vs dominance coef-
ficients and randomly sampled to different marker densities. We
also compared temporal window sizes for summarizing environ-
mental variables, and dimension reduction of either the genetic
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or environmental data for use in incorporation G� E effects in
models for environment-specific GP. Finally, we compared the
relative utility of different ways to represent G�E effects in pre-
diction models under scenarios with varying levels of genetic and
environmental separation between training and testing data sets.

Materials and methods
Environmental, phenotypic, and genetic marker data from years
2014 to 2016 of the Genomes to Fields maize project described in
Rogers et al. (2021) were used for predictive modeling. In this
study, we included additional soil parameters for each field-
testing environment in the US locations from the USDA-NCRS
Soil Survey Geographic Database (Soil Survey Staff 2021) obtained
using the package soilDB (Beaudette et al. 2021) in R (R Core
Team 2020) (Supplementary File 1). Parameters measuring soil
particle size, water holding capacity, slope, and erosion factors
were obtained for all soil horizons up to 2 m of depth
(Supplementary Table 1). Soil horizons are layers defined by
physical, chemical, and biological properties. The proportion of
each horizon in the first 2 m of soil was computed and then used
as a weight in computation of weighted values across horizons
for each soil parameter. Missing values for coarse and fine silt
representative value (RV, siltco_r, and siltfine_r) correspond to 0
values and were imputed as 0 where missing. Values for ex-
changeable cations (cec7_r), NH4OAc extracable bases (sumba-
ses_r), and exchangeable hydrogen ions (extracid_r) were
observed to be missing in very few cases and imputed using the R
package mice (van Buuren and Groothuis-Oushoorn 2011). The
USDA Soil Survey does not include data outside of the United
States, therefore, to include these parameters in predictive
modeling only the 59 US environments were used for this study,
dropping 6 yield trial environments in Ontario, Canada, and leav-
ing 16,106 hybrid-environment yield BLUEs for analysis, all of
which had corresponding genetic marker data, weather data, and
soil data.

Marker matrices
The imputed and filtered set of 20,373 SNP marker calls described
in Rogers et al. (2021) was used as the starting genotypic data set
for this analysis. Additive allele calls were recorded as counts of
the minor allele (0, 1, 2). Dominance genotype calls were derived
from the same matrix and called each homozygote as a 0, and
heterozygous genotypes as 1 (Vitezica et al. 2013; Mu~noz et al.
2014). Each set of marker scores was centered and scaled within
loci such that marker i followed a distribution where
mi � Nð0; 1Þ.

Models
Models were fit using R 4.0 (R Core Team 2020) using the North
Carolina State University High Performance Computing Cluster
(NCSU HPC) Henry2 cluster with the package BGLR (P�erez-
Rodr�ıguez and de los Campos 2010), using a custom shell script
for batch submission of jobs (Supplementary File 2) and a custom
R script for job execution (Supplementary File 3). The Henry2
cluster is a heterogeneous Intel Xeon based Linux cluster, and
compute nodes include a mix of several generations of Intel Xeon
processors in dual-socket blade servers. Nodes containing the
same generation of processor may have varying amounts of
memory. Core counts for nodes range from 8 to 32, and memory
ranges from 16 to 512 GB. For the purposes of this high through-
put calculation, jobs were placed on “first available” nodes having
at least 70 GB of RAM. Jobs were submitted using a shell script

(Supplementary File 2), which takes arguments for the number of
folds to execute, what type of model to run, where to direct out-
put, and what type of cross-validation to run. The jobs submitted
using this script then execute the R script (Supplementary File 3)
for a given fold, loading a workspace custom for the model type
run. All data used for prediction can be found in the folder
R_data_objects (Supplementary File 4). Post hoc analyses were
done in R (Supplementary File 5).

Models were built strategically to answer questions about
what components are useful for building complex G�E models
for prediction. Data sets available to use for predictive modeling
include both additive and dominance marker matrices of 20,373
markers, windowed environmental data sets covering 5-, 10-, 15-,
and 30-day windows along with soil data derived from the USDA
soil survey, and trait BLUEs from stage 1 analysis of each environ-
ment that accounted for differences in experimental design
(Rogers et al. 2021). With these components available, we were
able to ask several questions regarding what components would
be most useful for building a G�E model—including the neces-
sary number of markers, resolution of environmental data, and
what type of G�E term was the most useful for modeling. A
model using the complete data would involve 20,373 additive
marker coefficients, 20,373 dominance marker coefficients, 377
environmental covariates at the higher resolution of 5-day win-
dows, and 2 G�E terms with 7,680,621 interaction covariates
each, for A�E and D�E effects, respectively. This model would re-
quire more RAM and computing time than reasonable for a plant
breeding program, thus we investigated subsets of this full model
to reduce memory and time requirements.

To reduce the complexity of the parameter space, we broke
this problem into several steps. We first compared the ability of
marker matrices of size 5,093 markers, 10,153 markers, 15,280
markers, and 20,373 markers to predict genetic main effects.
Next, models utilized the chosen markers and added environ-
mental data summarized into 1 of 4 different temporal window
sizes to determine what resolution of environmental data pro-
vided the highest prediction ability for environment-specific hy-
brid values. Finally, the selected genetic and environmental
components were used to create G�E models for environment-
specific prediction. This allowed us to test a reasonable subset of
all possible models that could be created for their performance in
environment-specific prediction while addressing relevant ques-
tions to what components were necessary for creation of a useful
G�E model.

Genetic main effects
To determine if genotype effects could be accurately modeled
with a smaller number of markers than the complete set of
20,373, we generated subsets with 5,093, 10,153, or 15,280
markers by randomly sampling 1 time each from the original
data set. Then models for genetic main effects were fit on hybrid
yield BLUEs averaged across environments from Rogers et al.
(2021). Models of the following form were compared for their abil-
ity to predict genetic main effects:

y ¼ lþMbþ e;

where y is the vector of yield BLUEs averaged across environ-
ments, l is the grand mean, M is a marker matrix containing cen-
tered and scaled additive ðAÞ marker or dominance ðDÞ marker
calls with row dimension equal to the number of unique hybrids
(1,916) and column dimension equal to the number of markers
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(5,093, 10,153, 15,280, or 20,373), b is the vector of marker effects,
and e is the vector of residual effects.

In addition, models with both additive and dominance effects
were tested, using equal numbers of markers for each effect:

y ¼ lþ Abþ Dcþ e;

where y, l, and e are the same as described previously, but both
additive ðAÞmarker and dominance ðDÞmarker matrices of iden-
tical dimensions were fit, and b and c are the vectors of marker
additive and dominance effects, respectively. All marker effects
were fit under Bayesian Ridge Regression using the BGLR package
(P�erez-Rodr�ıguez and de los Campos 2010).

Within each class of model complexity (defined by the total
number of marker effects modeled), we chose the model with
higher average prediction ability using a single replication of 10-
fold cross-validation in which a random set of 10% of the hybrids
were placed in the test set for a given fold. Prediction ability
within each test set was computed as Corðŷi; ŷi;BLUEÞ, the correla-
tion between the predicted value for hybrid i and the BLUE for hy-
brid i. Prediction abilities were averaged over folds. Then, using
the simplest class of models, which involved a single marker ma-
trix of 5,000 markers as a baseline, we selected models with
higher complexity if they increased prediction ability by at least
1% compared with simpler models. By this process, we selected
the matrix of 10,153 marker dominance effects for use in subse-
quent models.

Environment main effects
Next, we compared the ability of models incorporating environ-
ment effects to predict environment-specific hybrid BLUEs.
Models had the form:

y ¼ lþMbþ Ecþ e;

where y is the vector of hybrid-environment combination yield
BLUEs, M is the matrix of 10,153 marker dominance coefficients,
b is the matrix of marker effects, E is either a matrix of environ-
ment label dummy variables or the matrix of environmental vari-
ables summarized within 5-, 10-, 15-, or 30-day windows plus
additional soil parameters, c is the vector of environment main
effects or environmental variable effects, and e is the vector of re-
sidual effects. Marker effects were modeled with Bayesian ridge
regression; environment label main effects were modeled as fixed
effects, or environmental covariables were modeled with a distri-
bution of effects under LASSO (Tibshirani 1996; Park and Casella
2008; de los Campos et al. 2013).

Models were compared based on the mean ability to predict
hybrid-environment BLUEs from a single year held out from the
training set, averaged over the 3 possible training-test set combi-
nations, chosen as a challenging scenario for prediction in
untested environments. The environmental window with the
highest mean predictive ability across the 3 years was utilized as
the environmental component in subsequent G� E modeling.

G 3 E effects and dimension reduction methods
To make inclusion of G�E effects more computationally tracta-
ble, dimension reduction was used to model the interaction be-
tween the genetic and environmental parts of the model.
Without dimension reduction, the G�E term would involve
3,828,058 predictors (derived from all combinations of 10,153
markers and 377 environmental covariates from the selected en-
vironment variable matrix), which would require impractically

long computation times. Dimension reduction can be applied to
either the marker or environment matrices prior to creation of
the matrix of G�E effects. To compare dimension reduction of
the genetic effects to that of environmental effects, we kept 1 of
the 2 effect matrices intact and applied principal components
(PCs) analysis to the other matrix, retaining a number of PCs
such that the product of genetic and environmental effects was
always maintained at approximately 100,000 effects. Specifically,
this was achieved by retaining all 10,153 marker dominance
effects along with the first 10 PCs of the environmental variable
matrix and computing a matrix GEPC with 101,530 columns by
multiplying each column of the marker matrix by each column
of the environmental PC matrix element-wise. Alternatively, we
multiplied each column of 377 environmental variables by each
of the first 265 PCs of the marker matrix to form a matrix GPCE
with 99,905 columns. The first 10 PCs of the environmental vari-
able matrix accounted for 60% of the total variance of that ma-
trix, and the first 265 PCs of the marker matrix accounted for 70%
of the total marker variation. We accounted for computation
time for dimension reduction when comparing computation time
for different models.

Models incorporating G�E effects had the form:

y ¼ lþ Mbþ Ecþ GEPCdþ e

or y ¼ lþ Mbþ Ecþ GPCEdþ e;

where terms are the same as defined in the previous section,
with the addition of the matrix of marker-by-environment pre-
dictors (GEPC or GPCE) and the vector of marker-by-environment
effects (d). Marker effects were estimated under Bayesian Ridge
Regression, whereas environmental covariate main effects and
G�E effects were each estimated with LASSO with BGLR (P�erez-
Rodr�ıguez and de los Campos 2010).

These 2 models were then compared under different cross-
validation scenarios, as described below.

Computation of prediction ability and statistical
bias
Our goal was to evaluate different models for prediction ability
under different scenarios defined by the scheme to separate
training from test data sets. In each case, we held out the speci-
fied proportion of hybrid-environment BLUEs from the training
set, and then measured prediction ability as the mean correlation
over folds between predicted values and observed BLUEs within
the held-out test set. The prediction ability correlation within
each fold was measured in 2 ways: (1) correlation across environ-
ments measured as a single correlation value involving all held-
out observations and (2) within-environments where correlation
was measured for each environment on all held-out observations
in said environment.

Within-environment bias was estimated within each test set
to determine if models had bias toward over- or underpredicting
held out observations within each environment:

Bias ¼ x�Predicted � x�Observed;

where x�Predicted is the mean of predicted values for the test set in a
particular environment and x�Observed is the mean of observed val-
ues for the test set in that environment.

Negative bias indicates that the model systematically predicts
yield values lower than observed in the given environment, and
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positive bias indicates prediction of yield higher than observed on
average. Within-environment bias relates to how accurately envi-
ronment main effects are captured by the model. We also esti-
mated the slope of the regression of observed values on predicted
values within each site, which indicates the relative shrinkage or
expansion of predictions compared with observed values, and
which has also previously been referred to as a measure of bias
in prediction (Daetwyler et al. 2013). Here, we refer to this statis-
tic as slope to distinguish it from bias in predicting the overall
environment mean.

Cross-validation and sampling schemes
Prediction ability of the different models was measured under a
variety of cross-validation and sampling schemes that mimic
prediction scenarios encountered in plant breeding programs
(Fig. 1a). The first 2 methods (CV1 and CV2) were proposed by
Burgue~no et al. (2012) and are designed to mimic 2 situations of-
ten encountered by plant breeders. We also propose additional
sampling scenarios that approximate other scenarios that may
often be encountered by plant breeders. Code for all sampling
schemes is in Supplementary File 3.

Baseline sampling
The different sampling schemes resulted in different sizes of

training data sets, so we first measured the effect of reducing the

number of observations within training sets on prediction ability

by using random sampling to place 10%, 20%, 30%, 40%, 50%, or

60% of the observations in the test set, such that the model was

trained on the remaining data. Baseline sampling was done such

that a specified percentage of observations were placed in the

test set using random sampling. This was repeated 10 times for

each hold-out percentage to compute a mean prediction ability.

Cross-validation 1
Cross-validation 1 (CV1) is designed to evaluate prediction of gen-

otypes that have not yet undergone field evaluation, such as in

the case of newly developed lines (Burgue~no et al. 2012). In this

scenario, all observations of a random set of 10% of the hybrids

were held out from model training, and the trained model was

used to predict the values of this 10% of hybrids at all environ-

ments in which they were actually observed (Fig. 1a).

Fig. 1. Cross-validation schemes involved either random or stratified sampling of hybrids or environments. a) Schematic of bidirectional cross-
validation structure designed to leave out sets of hybrids and sets of environments at the same time. b) Diagram of training and test data for
bidirectional sampling schemes. A set of hybrids and environments were held out from training, and prediction accuracy was computed in the data set
representing the intersection of hybrids and environments held out from the training data. c) Average environmental and genomic similarities between
training and test sets for each sampling scheme and mean prediction ability from model using interactions of PCs of the marker matrix and all
environment variables [PCA(Markers)*Env].
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Cross-validation 2
Cross-validation 2 (CV2) is used to approximate the scenario

where genotypes are evaluated in a subset of environments

(Burgue~no et al. 2012). In this scenario, half of the existing obser-

vations of 10% of the hybrids from CV1 are held out as part of the

test set, while the other half are used in training (Fig. 1a). The

half of observations used in training will be part of the test set in

a different, nonoverlapping fold. This scheme allows for the cor-

relation of performance between environments to aid in predic-

tion of performance at another related environment.

LO1Y: leave out 1 year
Leave out 1 year (LO1Y) cross-validation was designed to ask the

question: How well can environment-specific performance be

predicted from training data collected in different years than the

test environments? In the practical breeding situation, historical

data are available to predict future performance. In our case, we

used data from 2 years as training data and the held out third

year was the test set (Supplementary Table 2; Fig. 1a).

LORE: leave out related environments
To test the impact of reducing the similarity between testing and

training environments on the ability to predict environment-

specific performance, we used the 7 environment clusters de-

fined by weather variables described in Rogers et al. (2021) to de-

fine training and test sets (Supplementary Table 2). Each

environment cluster was used once as the test set, with model

training performed on the other 6 environment clusters. If envi-

ronmental similarity between training and test sets is important

for prediction ability, we expect prediction ability to decrease

more in this case than when holding out random sets of environ-

ments (Fig. 1a).

LORH: leave out related hybrids
Practical breeding programs often introduce new breeding fami-

lies, prompting the question of how well environment-specific

performance of new germplasm subpopulations can be predicted

from training data on distinct germplasm. To measure the

change in prediction ability due to genetic differentiation be-

tween training and test sets, we used the 10 marker-defined hy-

brid clusters identified by Rogers et al. (2021) to define training

and test sets (Fig. 1a). In this scenario, we used environment-

hybrid BLUEs from 9 of the 10 hybrid cluster as training data and

environment-hybrid BLUEs from the 10th cluster as test data, re-

peating this process for all 10 clusters as the test set

(Supplementary Table 2).

LO1E: leave out 1 environment
A possible practical implementation of environment-specific pre-

diction is to predict performance within a location that is in the

same year and geographically similar to a relatively large training

set. By careful stratification of testing sites, a breeding program

could potentially leverage training data to predict in untested

locations within the range of the training sets (Fig. 1a). To evalu-

ate prediction ability in this scenario, we used leave 1 environ-

ment out cross-validation, wherein environment-hybrid BLUEs

from 58 of the environments are used for model training and pre-

diction ability is measured within the single held-out environ-

ment (Supplementary Table 2). This process is repeated by using

each individual environment as the test set in turn.

Bidirectional cross-validation methods
The following CV methods combine 2 directions of data censoring
to create training and test sets, they are designed to examine
problems commonly encountered in breeding that can result in
loss of prediction accuracies. Each method censors a set of
hybrids, either leaving out 10% of hybrids at random using the
folds from CV1 or in a stratified manner by leaving out geneti-
cally defined hybrid clusters, and also censors a set of environ-
ments by either leaving out 1 entire year of data or an
environmental cluster (Fig. 1a). The training data in these cases
are comprised of data not in the set of held out hybrids or envi-
ronments, i.e. the complement of the union of the held-out
hybrids and environments (Fig. 1b). The paired test set is the in-
tersection of the held-out hybrids and environments (Fig. 1b).
This results in differing levels of similarity between training and
testing environments, and between training and test set genetic
composition (Fig. 1c). In a few cases where individual test envi-
ronments contained less than 8 hybrid observations, we did not
estimate the within-environment prediction ability.

CV1 1 LO1Y: leave out 10% of hybrids and 1 year of data
To simulate prediction of similar genetic materials in future
years, we leave out any observations in the union of a random
hybrid fold and the observations from a single year (expected and
actual number of folds ¼ 30). For example, when the test set of
hybrids is the first CV1 fold and the test year is 2014, 470 observa-
tions of hybrids from fold 1 in 2014 are censored, all 4,193 addi-
tional observations from 2014 are also held out to fully mask year
2014 from the training set, and all observations of the held out
470 hybrids from years 2015 (n¼ 505) and 2016 (n¼ 989) were also
censored to fully mask the test set genotypes from the training
set. In this case, a total of 5,652 observations are held out of train-
ing, and of these, 470 compose the test set while the remainder
are discarded (Fig. 1b; Supplementary Table 2).

LORE 1 LO1Y: leave out related hybrids and 1 year of data
To test the problem of predicting performance within a new ge-
netic group in a different year than the training set, we created
training sets that leave out any observations in the union of a re-
lated hybrid cluster and a single year of data, paired with test
sets that include the intersection of the hybrid cluster and year.
This uses the LORH folds along with the year fold. For this set,
the actual number of folds (28) is lower than the potential num-
ber of folds (30, from all combinations of 3 years and 10 hybrid
clusters), because none of the hybrids from cluster 3 were
planted in 2014, and none of the hybrids from cluster 10 were
planted in 2016 (Supplementary Table 2).

CV1 1 LORE: leave out 10% of hybrids and related
environments
This method is designed to test environment-specific prediction
ability of germplasm related to the training set but evaluated in
distinct environments training sets for this scenario hold out a
random 10% of hybrids (from a CV1-fold) and 1 environmental
cluster, paired with a test set composed of the intersection of the
test hybrids and environment cluster (Supplementary Table 2).

LORH 1 LORE: leave out related hybrids and environments
The most challenging scenario for prediction is the idea of pre-
dicting performance of new germplasm in untested environ-
ments. For this scenario, training sets leave out the union of a
hybrid cluster and an environment clusters, and their paired test
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sets include the intersection of these hybrid and environment
clusters (Supplementary Table 2).

Influence of genetic and environmental similarity between
training and test sets on prediction ability
We characterized the genetic similarity between training and test
sets for each prediction scenario using the mean dominance ge-
nomic relationship coefficient (estimated in Rogers et al. 2021).
We also computed the covariances between all pairs of environ-
ments using the complete set of scaled environmental variables
and used these covariance values as measures of environmental
similarities (Fig. 1c). We then performed ANOVA on the 30 predic-
tion ability mean values from the 30 combinations of prediction
models and cross-validation schemes using following model:

PAij ¼ mi þ g�j þ e�j þ e

where mi is the model (GþE, PC(Markers)*Env, or
PC(Env)*Markers), g�j is the mean dominance genetic relationship
between the train and test sets for sampling strategy j, e�j is the
mean environmental covariance between train and test sets for
sampling strategy j, e is the residual error, and PAij is the mean
across-environment prediction ability for model i, with mean ge-
netic and environmental covariances g�j and e�j, respectively.

Results and discussion
Genetic main effect prediction
Models for genetic main effects fit using additive marker matri-
ces, dominance marker matrices, and combinations of the 2 dem-
onstrated that using dominance marker matrices resulted in a
mean prediction ability increase of 8.2% (P < 2� 10�16) com-
pared with using an additive marker matrix of with the same
marker number (Fig. 2). These results are consistent with Rogers
et al. (2021), who demonstrated that although the additive ge-
netic variance component was greater than the dominance vari-
ance component for yield in the complete data set used here,
GBLUP models utilizing a dominance relationship matrix had bet-
ter fit to the data than their additive counterparts, and also pre-
dicted marginal genotype mean values better.

Fitting both A and D together did not improve prediction
ability compared with fitting D of the same marker number alone
(P ¼ 0.423) (Fig. 2). Rogers et al. (2021) previously demonstrated a
moderately high correlation between the additive and dominance
relationship matrices (Roff�diag ¼ 0:83; Rdiag ¼ 0:54Þ. Increasing
marker number did not increase predictive ability for models us-
ing A alone, but resulted in predictive ability increases with
diminishing returns for models utilizing D (Fig. 2). Increasing
from 5,093 to 10,153 dominance markers resulted in a prediction
ability increase of 1.1% points on average, while increasing from
10,153 to 15,280 markers resulted in an additional increase of
only 0.5%, and adding markers beyond 15,280 did not result in a
consistent increase in prediction ability. From these results, we
selected the dominance marker matrix with 10,153 markers to
represent hybrid genetic effects for all subsequent environment-
specific prediction modeling.

Environment main effects
Weather variables were summarized into 5-, 10-, 15-, and 30-day
windows along with 23 variables representing soil parameters.
We compared the use of summary values of weather variables
with differing temporal resolution to model environment main
effects along with the 10,153 marker dominance effects

when predicting hybrid-environment mean values. All models

were compared using a “leave out 1 year” CV (LO1Y) strategy, in

which a single year of data was left out as the test set, to provide

a challenging scenario for prediction using environment main

effects.
Models using the 5-day window set had the best performance

of the models tested, improving environment-hybrid prediction

accuracies by 30%, 19%, and 5% compared with environment

labels in test years 2014, 2015, and 2016, respectively (Fig. 3).

Therefore, the 5-day window size was used for weather variables

in subsequent G�E models to serve as the E portion of the

modeling efforts. Larger weather data window sizes resulted in

increased prediction ability for the 2014 and 2015 data, but de-

creased ability for the 2016 data compared with environment

labels. This indicates that addition of environmental variables

helps for GP ability, but the decrease in prediction ability when

predicting observations in year 2016 is likely due to differences

between 2016 and previous years in terms of population composi-

tion and weather (Rogers et al. 2021).

Adding G 3 E interactions to prediction models
Baseline prediction ability
Downsampling training size had only a small effect on overall

prediction ability. For example, removing 60% of observations

from the training set resulted in an average decrease in predic-

tion ability of 1.9% compared with holding out 10% of observa-

tions (Fig. 4). These results indicate that observed differences in

prediction ability from stratified train-test sampling schemes to

be discussed subsequently would be almost entirely due to the

stratification itself rather than due to training set sample size.

Results also demonstrated that the effect of training size was not

consistent among all test environments, with some test environ-

ments having little to no change in prediction ability when reduc-

ing training population size. This is likely because the G2F

experimental trials were neither balanced for genotype composi-

tion, nor evenly distributed geographically. As more data are re-

moved from the training set, less densely sampled geographies

experience faster drops in prediction ability in part due to re-

duced covariance to the training set (Supplementary Fig. 1).

Fig. 2. Prediction ability for hybrid yield main effects using either
additive (A) or dominance (D) marker coefficients or both (AþD) with
differing numbers of markers (5,093, 10,153, or 15,280, or 20,373)
measured using 10-fold cross-validation.
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Does the dimension on which reduction occurs
matter?
On average, the addition of the G�E term using PCA on the
markers resulted in a 2.7% increase in prediction ability, while
addition of the G�E term using PCA for dimension reduction on

the environmental data increased prediction ability by 2.0% in
the baseline cross-validation scheme (Fig. 4). These results indi-
cate that while both additions of G�E result in an increase in
prediction ability, the model reducing dimension of the genetic
component better captures the G�E effects observed in the data.

Fig. 3. Hybrid-environment yield prediction ability of models using 10,153 dominance marker coefficients and environment labels or environmental
variables summarized in 5-, 10-, 15-, or 20-day windows measured by holding out a full year of data as a test set.

Fig. 4. Baseline prediction ability of hybrid-environment yield performance from 10-fold cross-validation using different percentages of randomly
sampled training and testing data, using a model with 10,153 marker dominance coefficients, weather variables summarized in 5-day windows, and
G�E effects computed from interactions of the PCs of the environment variables and all markers [PCA(Env)*Markers] or from interactions of PCs of the
marker matrix and all environment variables [PCA(Markers)*Env]. Each model and percentage of train-test split was run on 10 random samples.
Prediction ability was measured on values across all environments.

8 | G3, 2022, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/advance-article/doi/10.1093/g3journal/jkab440/6486423 by Pacific Lutheran U

niversity user on 11 January 2022



This could stem from the retained PCs of the environmental data
capturing a smaller percentage of the observed variance than the
marker PCs (60% compared with 70%), or from PCA not efficiently
weighting the environmental covariates. G�E models that utilize
crop modeling to determine the most important environmental
variables to include in GP models allow a priori preselection of
environmental variables (Lobell et al. 2013; Heslot et al. 2014;
Bustos-Korts et al. 2019; Hammer et al. 2019). In contrast, we
used LASSO on the environmental covariable main effects and
their interactions with markers in the hope that irrelevant envi-
ronmental variables and interactions would have their effects
shrunk to 0 empirically during the training model fit. Dimension
reduction by PCA on the marker data is perhaps more reasonable
for highly polygenic traits that are controlled by many variants
with nearly equal very small effects, than it is on the environ-
mental data, where the assumption of similar importance among
variables is not grounded in biology.

Within-environment prediction results for the baseline sce-
nario that randomly sampled different training set sizes showed
that addition of the PCA(Markers)*Env G�E term increased
mean-within environment prediction ability by 6.9% on average.
Including this G�E term in the prediction model was more help-
ful for certain types of environments with greater deviation from
the average G2F environment, which would have a score of ap-
proximately 0 for each factor in previous environmental analyses
(Rogers et al. 2021). On the FA biplot of the first 2 factors, this av-
erage G2F environment would be located within the temperate
Northeastern, Midwestern, and Southern Corn Belt groups
(Rogers et al. 2021). This follows from interpretation of the G�E
term as genotype-specific deviations from the expected value in
a given environment (P�erez-Rodr�ıguez et al. 2017). Addition of the
G�E term resulted in a negligible effect on within-environment
ability for midwestern and northern environments, but increased
prediction ability across all training sizes for the dry plains envi-
ronments (KSH2_2016, TXH2_2014, and TXH2_2015), and in-
creased prediction ability for GAH1_2014 and TXH1 in 2015 and
2016 (Supplementary Fig. 1). Prediction ability was reduced in 13
environments, with a maximum reduction of 10.3% (TXH1_2014).
Addition of G�E interactions did not improve predictive ability
of GAH2_2016 (decrease of 6.7%) or ILH1_2016 (increase of 0.5%),
indicating that the negative genetic correlation for yield
between these 2 environments and other environments reported
by Rogers et al. (2021) limited recovery of useful information
for genetic effects in these unusual environments (Howard et al.
2019).

Does the effect of G 3 E interactions in prediction
models depend on the relationships between
training and test sets?
The G2F hybrid clusters, identified on the basis of genetic similar-
ity by Rogers et al. (2021), include diverse sets of hybrids with
some overlap in parentage, which likely provides great enough
covariance to aid in prediction of the related hybrids left out in
LORH. Furthermore, although hybrids were not randomized to
environments, stratification by hybrid clusters did not greatly re-
duce the environmental covariance between training and test
sets (Fig. 1c). All schemes where whole environments or years
were left out (LORE, LO1Y, and the bidirectional methods) led to
decreased prediction ability. Prediction ability for new years or
distinct environment clusters is relatively poor (Fig. 5). Although
the maize Genomes to Fields experiment includes a relatively
large sample of environments, it remains insufficient for training
robust models that extrapolate to new environments, at least

without incorporating crop model-guided environmental variable
selection. The 2 bidirectional CV schemes leaving out related
environments (CV1þ LORE: leave out related environments þ
10% of hybrids, and LORH þ LORE: leave out related environ-
ments and hybrids) performed similarly to LORE despite the test
set being comprised of hybrids that were not seen in the training
data (Fig. 5).

Addition of environmental covariates and G�E terms in-
creased prediction ability across CV1, CV2, and LORH sampling
schemes, but did not aid prediction ability in more complex sam-
pling schemes (Fig. 5). On average, CV1 across environment pre-
dictive ability for the G� E model using PC(Markers) was 80.8%, a
gain of 8.0% over the GþE model (Fig. 5; Supplementary Table 3).
The PC(Env) gave an increase of prediction ability of 4.6% over
the GþE model, but lagged behind the PC(Markers) model, simi-
lar to observations in the baseline test. Across-environment pre-
diction ability for CV2 for the full model was very similar to the
randomly sampled model of comparable size. This method had
the highest prediction ability across environments, likely because
the test set hybrids were present in the training set. Burgue~no
et al. (2012) note that CV2 is an easier prediction problem than
CV1, but that it adds time to the generation interval because field
testing is required for all selection candidates. Within environ-
ments in the CV2 scenario, the PC(Marker) G� E model had an
average gain of 8.3% over the GþE model, compared with the
PC(Env) model’s average gain of 4.6% over the Gþ E model (Fig. 5;
Supplementary Table 4). In the scenario where single environ-
ments were left out (LO1E), addition of the G�E terms increased
prediction ability slightly in comparison to the GþE model. This
indicates that having enough related environments allows the
G�E model to make gains in prediction accuracy. Observations
of no increase in prediction ability from the GþE model to either
G�E model in scenarios where test environments are entirely ex-
cluded from training sets indicate that while G�E information
can improve prediction ability in some cases, it was not helpful
when the environments in the test sets were not sampled directly
in the training sets. This suggests that our estimates of specific
marker-by-environmental covariable interaction effects cannot
be extrapolated beyond the specific environments in which they
were estimated.

Results from the analysis of prediction ability as a function of
genetic and environment similarity between training and test
sets demonstrate that mean environmental covariance between
the train and test sets was very important (p ¼ 2:6� 10�10) for
across environment prediction ability (Table 1). In contrast, pre-
diction model and genetic similarity had no significant effect on
mean prediction ability (Table 1). The genetic relationships
among the G2F hybrids are highly complex, as demonstrated by
Rogers et al. (2021). Therefore, even separating the hybrids by ge-
netically defined clusters was not sufficient in this case to dra-
matically reduce prediction ability across groups.

Where does modeling G 3 E help the most?
Although addition of the GxE term did not increase overall pre-
diction ability across sampling scenarios, we hypothesized that
GxE effects might be useful in environments that deviate from
the average G2F environment. This follows from the idea that
G�E effects are considered to be environment-specific deviations
from the stable genetic and environmental main effects (Lopez-
Cruz et al. 2015), consequently we would then expect G�E to be
most helpful in cases where the environment deviates more from
the mean environment. The G2F environments represent an un-
balanced sample with the number of temperate northern and
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midwestern environments outnumbering the more southern, hu-
mid environments, and dry plains environments. Gain when
moving from GþE models to G�E models was present for most
environments on average in simple sampling schemes (CV1, CV2,
and LORH). Within environments under CV1, there was a large
range of prediction abilities observed, with mean prediction abili-
ties (averaged across folds) ranging from �0.06% (GAH2_2016)
to 72.2% (WIH1_2016). Two environments, ILH1_2016 and
GAH2_2016, had very low mean within-environment predictive
abilities. This can be attributed to their small or negative correla-
tions with other environments (Rogers et al. 2021). Under CV2,
within-environment mean prediction abilities had a similar range
to those observed in CV1, ranging from 12.3% (ILH1_2016) to
77.9% (WIH1_2016). In CV2, GAH2 has average within-
environment prediction ability of 44.7%, indicating that presence
of GAH2 data was helpful in improving prediction ability for an
environment with little covariance to other environments in the
dataset. In this scenario all of the environments had at least a
small increase in prediction ability when adding G�E effects to
the model, indicating that overlap of hybrids in the training and
test sets aided prediction ability.

In particular G�E models aided prediction ability in the
Georgia environments (GAH1) and the humid Texas environment

(TXH1) (Fig. 6a). Smaller, but consistent increases were also ob-
served in North Carolina (NCH1) environments when G�E terms
were added to the model. Notably, introduction of G�E did not
help in the dry plain environments (KSH1 and TXH2), which have
a different type of G�E than the southeastern, humid environ-
ments.

In the case of more challenging sampling schemes, moving
from a GþE model to a G�E model resulted in a slight decrease
in prediction ability on average (Fig. 6b). This is likely because es-
timation of G�E effects in environments distinct from the test
environments was not useful for extrapolation to the test envi-
ronments and added noise to the model. Therefore, for the addi-
tion of G�E interactions to improve environment-specific
prediction, the training environments must adequately represent
the test environments.

How does bias change depending on sampling
scheme?
Within-environment mean bias varied by environment, with
some yield values being more likely to be under- or overestimated
than others (Fig. 7). Train-test composition influenced within-
environment bias more than the type of model (as was true for
overall prediction ability), with the sampling schemes where the
training set represented the test set well (CV1, CV2, and LORH)
having within-environment bias values close to 0, and LORE
having the most extreme within-environment bias values. This
indicates that stronger positive genetic and environmental cova-
riances between training and test sets help to reduce prediction
bias. Addition of G�E terms tended to slightly reduced bias in
environments where G�E aided prediction, but had little effect
on bias in other environments, consistent with the assumptions
of the G�E model estimating G�E effects as deviances of the
most common differing environment.

The slope of regression of observed on predicted values also
varied among environments but the distribution of these values
was similar for different prediction models (Supplementary

Fig. 5. Distributions of hybrid-environment yield prediction ability across cross-validation replicates for models including 10,153 marker dominance
coefficients and 377 environmental covariates, along with no G�E effects or G�E effects computed using PCs of the environmental data
[PCA(Env)*Markers]) or using PCs of the marker data [PCA(Markers)*Env]. Each model was evaluated in test sets selected by random sampling (CV1),
partial replication across environments (CV2), leaving out a single year of data (LO1Y), stratification by environment clusters (LORE), by hybrid clusters
(LORH), leaving out single environments (LO1E), and bidirectional censoring schemes leaving out both a year and 10% of hybrids (CV1þLO1Y), a year
and related hybrids (LORH þ LO1Y), environment clusters with 10% of hybrids (CV1þ LORE), and environment and hybrid clusters (LORH þ LORE).

Table 1. Analysis of variance of mean prediction ability as
affected by training-test dominance genetic relationships,
training-test environmental covariances, and a factor
representing prediction model type.

Factor df Sum of squares F-value P-value

Model type 2 0.00007 0.0023 0.9977
Mean dominance genetic

relationship (train, test)
1 0.00384 0.2502 0.6213

Mean environmental co-
variance (train, test)

1 1.565 102.0054 <0:0001

Residual error 25 0.384
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Fig. 2). The median value was slightly <1.0 for all methods and
sampling schemes (indicating slight overdispersion of predic-
tions), and the variation in the regression slopes increased when
test sets had greater genetic distance from training sets
(Supplementary Fig. 2).

Conclusions
Our results demonstrate that dominance effects are more impor-
tant than additive effects for prediction of grain yield in this hy-
brid maize data set, and that utilizing both dominance and
additive effects does not improve prediction ability. This comes
with the caveat that our dominance matrix was parameterized
such that marker calls measure heterozygosity (Vitezica et al.
2013; Mu~noz et al. 2014). Other parameterizations may measure
dominance such that addition of additive genetic effects would
aid prediction ability.

The above results demonstrate that addition of environmental
data as a measure of similarity between environments aids in
environment-specific GP. The window size used matters, and can
be selected empirically, although it is still unknown if identifying
the optimal windows for any given covariate will substantially in-
crease prediction ability. The parameter space for optimizing

windows is vast and challenging to address in a way that is com-
putationally feasible for the rapid turn-around between data col-
lection and prediction of breeding values usually required for
plant breeding programs. Jarqu�ın et al. (2020) used hourly weather
values summarized into an environmental relationship matrix for
GP in a subset of these same experiments, but reported little gain
in prediction ability even in CV1- and CV2-type scenarios, noting
that this was in part because of the equal weighting of very high
dimensional weather data for modeling. Our approach utilized a
5-day window size for summarizing weather variables, allowing
for the use of each of these variables individually in prediction
models while reducing computational burden and averaging out
noise present within hourly and daily values. Additionally, the use
of LASSO to model the environmental and GxE effects permits the
model to learn which covariates are important to a given trait,
demonstrating gain in predictive ability compared with the param-
eterization used by Jarqu�ın et al. (2020). Use of these environmen-
tal covariates permits prediction of environment-specific
performance, but the ability of such predictions depends greatly
on the training data including environments similar to the new en-
vironment. However, environment-specific prediction is also a
function of within-environment heritability, which limits predic-
tion ability in environments where heritability is poor.

Fig. 6. Representative examples for 2 patterns of change in within-environment prediction accuracy when adding G�E interactions to the GþE model
to as either PCA(Env)*Markers or PCA(Markers)*Env, using a) random cross-validation across hybrids scheme (CV1) or b) stratified sampling leaving out
groups of related hybrids and related environments (LORH þ LORE)
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Our G�E models aim to enable environment-specific predic-

tion such that both E and G�E effects for new environments can

be estimated using available environmental data, differing from

traditional GS models in that to predict performance in a new

environment only marker data for the genotypes of interest and

historical environmental data are needed. This eases implemen-

tation by not requiring extensive field trials to estimate G�E and

E effects in an environment prior to selection germplasm for said

environment. Our approach can expand to other crops and may

be especially useful in crops where G�E variance is important.

We found that dimension reduction still allowed G�E to aid in

prediction while allowing for models that were computationally

tractable under reasonable constraints (no model was allowed to

run for more than 24 h, and had to be able to run using less than

70 GB of RAM). The PC(Markers)*Env approach outperformed the

PC(Env)*Markers approach under similar dimensionalities, indi-

cating that dimension reduction on the marker side summarized

information in such a way that allowed for better modeling of

G�E effects than the PC(Env)*Marker counterpart.
Currently modeling G�E effects in a way that approximates

the biological reality is challenging, largely because of computa-

tional limitations in both memory and the turnaround time

needed by plant breeders to drive crossing decisions. The M�E

approach is limited to estimation of linear G�E effects, whereas

many covariates likely have a threshold or other nonlinear rela-

tionship with yield. For example, presence of drought is detrimen-

tal to maize development but high amounts of rain that may

cause flooding are also detrimental to development meaning that

the relationship between yield and rainfall tends to be quadratic.

Neural network models have become more popular in recent years

because of their abilities to handle such types of nonlinear rela-

tionships, but these types of models often require very large data-

sets, along with high amounts of RAM and computer processing

power. These requirements mean that this approach is currently

untenable for most plant breeders, especially those in the public

sector. For most use cases, we would argue that the M�E type

approaches here can provide reasonable prediction ability using

resources commonly available to academic breeding programs

such that they could implement this type of GP modeling.
It is important to note that modeling G�E will not rescue a

breeder from poor sampling of the target populations of environ-

ments and genotypes of interest. G�E modeling will likely be

most useful for programs that have a set of target environments

for future lines that are looking to direct early stage material

toward a specific target population of environments. It would

likely also help in merging material across a larger network of

Fig. 7. Prediction bias measured as the difference between the mean of test set hybrids within 1 environment and the mean of the corresponding BLUEs
at the same environments for hybrid-environment prediction models based on 10,153 marker dominance coefficients and 377 environmental variables
alone (GþE) or with the addition of PC(Env)*Marker interactions or PC(Marker)*Env interactions. Each column is 1 of the 59 G2F environments, sorted
alphanumerically. Each row corresponds to a cross-validation sampling scheme.
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environments, such as the case of breeders who would like to

move material developed in 1 geography to another, both of

which already have data. Framing G�E modeling to solve spe-

cific problems in plant breeding and identifying portions of breed-

ing pipelines where G�E would be useful for driving decisions

and optimizing in-field testing will be important to integrating it

into the plant breeder’s toolbox.

Data availability
Original trait, environmental covariate, and marker data were

taken from: https://doi.org/10.25387/g3.12636095. Scripts and

specific R objects used in the analysis can be obtained from

https://doi.org/10.25387/g3.17209085. Supplementary File 1 is

an R markdown script to extract soil data from the USDA-NCRS

Soil Survey Geographic Database (Soil Survey Staff 2021).

Supplementary File 2 is a bash script to submit multiple analysis

jobs to a high performance computing load sharing facility.

Supplementary File 3 is an R script that accepts input parameters

to select training sets and model types. Supplementary File 4 is a

zipped archive containing multiple data sets used in the analysis,

including the trait data subset for this study, the additive and

dominance marker matrices at various densities, and the

weather variables summarized to different temporal window

sizes. Supplementary File 5 is an R markdown script to compute

and summarize prediction ability from analysis outputs.
Supplemental material is available at figshare DOI: https://

doi.org/10.25387/g3.17209085.
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