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Abstract 

Despite efforts to collect genomics and phenomics (‘omics’) and environmental data, spatiotemporal availability and 
access to digital resources still limit our ability to predict plants’ response to changes in climate. Our goal is to quan-
tify the improvement in the predictability of maize yields by enhancing climate data. Large-scale experiments such as 
the Genomes to Fields (G2F) are an opportunity to provide access to ‘omics’ and climate data. Here, the objectives 
are to: (i) improve the G2F ‘omics’ and environmental database by reducing the gaps of climate data using deep neural 
networks; (ii) estimate the contribution of climate and genetic database enhancement to the predictability of maize 
yields via environmental covariance structures in genotype by environment (G×E) modeling; and (iii) quantify the pre-
dictability of yields resulting from the enhancement of climate data, the implementation of the G×E model, and the 
application of three trial selection schemes (i.e. randomization, ranking, and precipitation gradient). The results show 
a 12.1% increase in predictability due to climate and ‘omics’ database enhancement. The consequent enhancement 
of covariance structures evidenced in all train–test schemes indicated an increase in maize yield predictability. The 
largest improvement is observed in the ‘random-based’ approach, which adds environmental variability to the model.

Keywords:  Climate data science, deep neural network (DNN), genotype by environment (G×E) model, Genomes to Fields 
(G2F), maize yield predictability, train–test schemes.

Introduction

Global crop production is required to rise by 100–110% to 
meet the demands of the growing population by 2050, and, 
specifically, this value needs to increase 70% in the case of ce-
real yield (Tilman et al., 2011; Alexandratos and Bruinsma, 
2012; Matthews et al., 2013). At the local scale, weather and 
climate impact on crop production, leading to positive and 
negative production trends across the globe (Ray et al., 2015). 

Furthermore, data availability and missing values may constrain 
our ability to diagnose and predict complex crop traits, mainly 
yields subject to different environmental conditions (Hoogen-
boom, 2000). This study aims to improve crop yield predict-
ability in multienvironments by enhancing climate data and 
genomics and phenomics data (‘omics’) structures for better 
crop phenotypic responses.
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Worldwide efforts have been made to predict phenotypes 
of major crops, mainly yield under current and future climate 
variations in a range of spatial and temporal resolution scales 
(Stehfest et al., 2007). Despite improvements in crop model 
performance (biophysical and statistical models), climatic driv-
ers remain an unclear factor in the diagnostics and prognostics 
of crop productivity. Unlike the biophysical modeling efforts 
for yield prediction (Olesen et al., 2000; Mbungu et al., 2015; 
Raoufi and Soufizadeh, 2020), the statistical models provide 
an opportunity to analyze genetic variation in the modeling 
procedure, such as factorial regression (Baril et al., 1995), the 
Finlay–Wilkinson model (Finlay and Wilkinson, 1963), quanti-
tative trait locus-based models (Hayes et al., 1993), and genomic 
selection models (Meuwissen et al., 2001). These methods fa-
cilitate quantifying interactive effects of genes and environ-
ments called genotype by environment (G×E) interactions 
across environments (Meuwissen et al., 2001; Jarquín et al., 
2014, 2017; Crossa et al., 2017). In particular, genomic selection 
models use all molecular markers for phenotypic prediction 
(Crossa et al., 2017), enabling the use of complex environ-
mental data. Jarquín et al. (2014) improved a genomic selection 
model incorporating G×E interactions between markers and 
environmental factors via covariance structures.

Several studies have investigated the impacts of climate vari-
ables on yield, such as minimum and maximum temperature, 
solar radiation, and rainfall (Hoogenboom, 2000; Tao et al., 
2008). Ray et al. (2015) found that climate variability explains 
about one-third of crop yield variability, following spatial pat-
terns. Also, Lobell et al. (2009) reported global average yields 
of major crops at ~80% of the potential yield in most irrigated 
fields, suggesting improvements of cropping systems through 
climate adaptation actions. These improvements require a 
deeper understanding of how genotypes interact with environ-
ments and how phenotypes respond to key climate covariables, 
turning the selection of superior lines in each environment 
into sound breeding, a decrease in the yield gap between the 
current and the potential yields, and food production suffi-
ciency (Osei et al., 2014). Duvick (2005) highlighted that 
50–60% of maize yields rely on genetic improvements, indi-
cating the critical role of genetics in breeding tolerant varieties 
in response to biotic and abiotic stresses. However, the net cli-
mate effects on the predictability of phenotypes, including en-
vironmental variables such as temperature, dew point, relative 
humidity, precipitation, and their interactions with genomics, 
remain unclear. The elucidation of the role that climate drivers 
play in phenotypic responses can advance our understanding of 
how crop phenotypes respond to weather and climate changes 
across regions and scales.

Several national and international projects have conducted 
breeding trials for the major crops to record the genotypic, phe-
notypic, and environmental datasets at field scale for training and 
testing multienvironment statistical trait simulation efforts. Some 
of these are the International Maize and Wheat Improvement 
Center (genomics.cimmyt.org), ARVALIS (arvalis-infos.fr),  

Genomes to Fields (G2F) initiative (genomes2fields.org), and 
SOYNAM (soybase.org). The G2F’s ‘Genotype by Environ-
ment’ project records, synthesizes, and releases large-scale, 
multiyear, and multienvironment data of maize breeding trials 
across North America (Lawrence-Dill et al., 2019; McFarland 
et al., 2020). However, several environmental data gaps exist in 
the recorded environmental time series due to technological, 
logistic, and experimental design complications, limiting their 
use when fitting G×E models.

High-dimensional databases have been created to manage 
and harness an increasing availability of data from novel, ad-
vanced, and low-cost technologies to traditional digital prod-
ucts (Shekhar et al., 2017, Preprint; Quiñones et al., 2021). 
Expressions of these high-dimensional digital products are the 
‘omics’ databases, which have contributed to improving the 
diagnostics and predictability yields through statistical meth-
odologies such as the covariance structures (Howard et al., 
2014; Jarquín et al., 2021) and machine learning (Long et al., 
2011). The consolidation of such complex databases can ben-
efit from the expansion of climatological stations, the develop-
ment of gridded products and models, and the enhancement 
of other ‘omics’ digital resources. The enhancement of ‘omics’ 
and climate data contributes to better understanding of the 
propagation of errors from the climate data to the creation 
of covariance structures and the same predictability of phe-
notypes (Sarzaeim et al., 2020). Machine learning techniques 
such as artificial neural networks, support vector machines, 
and deep neural networks (DNNs) have been widely used 
to improve environmental data gaps of multiple complexities. 
Some experiences include improvements in daily precipitation 
(Hernández et al., 2016; Kumar et al., 2019, 2021), solar radi-
ation (Ghimire et al., 2019), temperature (Amato et al., 2020), 
and those that include complex integrated climate, agricultural, 
and hydrologic processes (Amaranto et al., 2018, 2019, 2020). 
A DNN is a sophisticated supervised and multilayer artificial 
neural network that potentially outperforms more traditional 
machine learning techniques such as the support vector ma-
chine method. DNNs enable the recognition of complicated 
unknown mathematical relationships between a large number 
of input(s) and output data more efficiently. Here we take 
advantage of the capability of DNNs to impute the missing 
values and improve the database for yield predictability.

The hypotheses associated with this study are formulated 
as follows: (i) the G×E predictability of maize yield values 
increases by using a DNN-enhanced environmental covari-
ance matrix interacting with genetic markers; and (ii) the con-
tribution of environmental variability will be evidenced in 
G×E prediction skill by the selection of train–test structure 
based on randomness, ranked covariance matrix, and the gra-
dient of single climate driver values (e.g. precipitation).

To test the hypotheses, the objectives of this research are 
defined as: (i) to improve the G2F ‘omics’ and environmental 
database by reducing the gaps in climate data using a DNN, 
enabling a larger sample of high-throughput markers and 
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tested phenotypes; (ii) to estimate the contribution of data-
base enhancement (from objective i) to the predictability of 
maize yield based on the interactions of the enhanced genetic 
molecular markers with the environment through the envi-
ronmental covariance structures in G×E modeling; and (iii) to 
identify the contribution and the possible attribution to the 
predictability of phenotypes by enhancing climate data (via en-
vironmental covariance matrices) to G×E model predictability 
by applying three trial selection schemes (random, ranked, and 
gradient) to provide evidence for the role played by the ran-
domization, ranking of the environmental covariance matrix, 
and precipitation gradient.

This study is structured as follows: first, the G2F database 
including ‘omics’ and environmental (i.e. climate) data and 
their limitations is described. Then, the methodology of the 
G2F database for improvement of the evaluation–improve-
ment pipeline to categorize G2F experiments and fill in the 
missing values is described in detail. Next, the G×E model and 
the equations employed incorporating the main and interac-
tive effects of climate and genetics are explained to evaluate 
the improved data effect on predictability skills. To evidence 
the contribution of climate to predictability enhancement, 
three train–test design approaches based on random selection, 
ranked environmental covariance, and precipitation gradient 
schemes are discussed. Finally, the results, discussion, conclud-
ing remarks, and proposed future work for subsequent efforts 
in maize phenotypic predictability analysis and improvements 
are also presented.

Study area and data

The G2F initiative, established in 2014, is one of the most 
comprehensive public-accessible maize breeding databases 
(Lawrence-Dill et al., 2019). The G2F initiative has operated 
several maize field trial plots across the USA and Ontario in 
Canada since 2014, assembling a unique large-scale, multiyear, 
and multienvironment data source for detailed and accurate 
maize breeding research. The database includes maize inbreeds’ 
genetic molecular markers (G), phenotypic measurements (P) 
during and at the end of the growing season, and environ-
mental data (E), mainly climatic variables captured during the 
crop development in every single experimental trial. The G2F 
data enable agricultural researchers, engineers, and economists 
to understand the main and interaction effects of ‘omics’ and 
environmental drivers on maize phenotypic responses, which 
helps to develop climate-adaptive and resilient maize cropping 
systems for economically important traits such as yield.

In the current study, we downloaded, processed, and used 
the G2F data collected between 2014 and 2017 for maize hy-
brid yield prediction. In this period, 98 hybrid experiments 
have been tested, including >46 000 maize replicated indi-
vidual hybrids selected from >3300 unique maize lines. The 
G2F experiments are distributed across more than 17 states 
in the USA and the province of Ontario in Canada (Fig. 1). 
More than one hybrid trial has been implemented in mul-
tiple cases in one experimental field. The name of each hybrid 
experimental trial is constituted of ‘year’, ‘state’, and ‘number 

Fig. 1. The spatial distribution of Genomes to Fields (G2F) experiments between 2014 and 2017. The size of the markers represents the accumulative 
number of experiments in each state.
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of hybrid experiment in the field’, respectively (for instance, 
‘2014TXH1’, ‘2014TXH2’, or ‘2015ILH1’). For each exper-
imental field, the genotypic, phenotypic, and environmental 
data are available through the G2F initiative website. 

The G2F’s ‘G×E’ project aims to integrate and provide ac-
curate ‘omics’ and environmental data to boost knowledge on 
the predictability of maize hybrid traits under diverse envi-
ronmental conditions. Yet, the main limitation with the G2F 
database are the several missing values in existing genotypes, 
phenotypes, and weather time series records, which precludes 
the use of the associated trials, limiting the simulation process. 
Therefore, to take the most advantage of the G2F database and 
involve a larger number of trials in the maize yield simulation 
procedure, we first need to fill in the missing values. The details 
of each dataset are explained below.

Environmental data (G2F-E)

The G2F has implemented and collected environmental data 
in 22 experiments in 2014, 26 experiments in 2015, 25 experi-
ments in 2016, and 25 experiments in 2017 in multiple states 
(Fig. 1). In each experimental field, several trials have been 
implemented with different maize hybrid cultivars. During the 
growing season, eight environmental variables were recorded 
every 30 min, and these are temperature [T (°C)], dew point 
[DP (°C)], relative humidity [RH (%)], solar radiation [SR (W 
m–2)], rainfall [R (mm)], wind speed [WS (m s–1]), wind di-
rection [WD (°)], and wind gust [WG (m s–1)] by a weather 
station located in the field. As mentioned before, despite the 
efforts made to record and integrate a comprehensive environ-
mental database, there are several gaps and missing values in the 
released time series in G2F-E datasets.

Cured environmental databases
For missing data imputation, three other publicly available 
databases were used: (i) the National Solar Radiation Data-
base (NSRDB), modeling and integrating a half-hourly grid-
ded meteorological dataset in the nation developed by the U.S. 
Department of Energy (Sengupta et al., 2018); (ii) DayMet, 
daily surface weather and climatological summaries devel-
oped by Thornton et al. (2018); and (iii) The Automated Sur-
face Observing Systems (ASOS), developed by the National 
Weather Service (NWS) which is a station-based program 
containing daily and sub-daily historical and forecasting hydro-
climate data. The variables included in the NSRDB, DayMet, 

and NWS databases, along with their spatiotemporal resolu-
tion, and sources are listed in Table 1.

Genomic data (G2F-G)

Single nucleotide polymorphism (SNP) sequences, as genetic 
DNA markers, have been generated by the genotyping-by-
sequence (GBS) technique (McFarland et al., 2020). The data 
are stored in a hierarchical data format file and released by G2F 
through their portal to represent genomic information of 1576 
maize (Zea mays L.) lines. The raw data in hierarchical data 
format have been processed by TASSEL 5 software (TASSEL, 
2021) to recognize the genotype in each allele for all the hybrids 
and convert the genetic codes to numerical genotypes. The 
numerical genotype refers to the probability of a major allele 
being selected randomly in a site marker. Genotypes are con-
verted to the probability that an allele selected at random at a 
site is the major allele; in other words, homozygous major is 1.0, 
homozygous minor is 0.0, and heterozygous is 0.5 (TASSEL, 
2019). For marker quality control, the hybrid lines with >20% 
missing SNPs have been removed. We also considered only the 
markers with minor allele frequency >0.03 in the G2F-G. In 
the updated SNP data, the missing values in each marker have 
been imputed by the average of the numerical genotypes of the 
non-missing values in the same site marker.

Phenotype data (G2F-P)

The growing stages of the maize crops were monitored, and 
various phenotypic categories have been recorded during and 
at the end of the growing season (at the maturity stage), among 
which are plant morphology [e.g. plant height (cm)], ear mor-
phology [e.g. ear height (cm), width (cm), and length (cm)], 
and plant productivity [e.g. grain moisture (%) and yield (bu 
A–1)]. In this study, the target phenotypic variable for simula-
tion and prediction purposes is yield measured in [bushels per 
acre (bu A–1)].

Materials and methods

G2F-E database evaluation and improvement
We designed a pipeline to find data gaps in the G2F-E time series and 
impute them. This pipeline evaluates G2F-E time series for each exper-
iment to find any data gaps over the growing season. Also, it categorizes 

Table 1. Summary of hydroclimatic variables features from NSRDB, DayMet, and NWS databases

Data-
base 

Variable (unit) Spatial 
 resolution 

Temporal 
resolution 

Source 

NSRDB T (°C), DP (°C), RH (%), SR (W m–2), WS (m s–1), WD (°), PW (mm), P (mbar) 4×4 km2 30 min https://nsrdb.nrel.gov
DayMet Tmin (°C), Tmax (°C), R (mm), SR (W m–2), P (Pa) 1×1 km2 Daily https://daymet.ornl.gov/getdata
NWS T (°C), DP (°C), RH (%), R (mm), WS (m s–1), WD (°), WG (m s–1) ASOS network Subdaily https://mesonet.agron.iastate.edu

PW, precipitable water, P, pressure. The other acronyms are defined in the text.
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them into ‘complete’, ‘empty’, and ‘incomplete’ experiments, and finally 
fills the data gaps of the ‘empty’ and ‘incomplete’ datasets to circumvent 
the missing records (Fig. 2). Suppose the time series for the mth variable 
in each G2F experiment is available completely (i.e. ‘complete’ dataset) 
over the growing season; in that case, it is directly stored in the final 
G2F-E database (see Fig. 2). Otherwise, the time series is either ‘empty’ if 
the time series for variable mth has not been recorded during the entire 
growing season or ‘incomplete’ if the time series for variable mth has been 
collected, but there are still some gaps in the recorded time series. These 
gaps are required to be filled before transfer to the final G2F-E database 
for further simulation. In summary, the raw G2F-E is the primary input 
of the pipeline, and the improved fulfilled G2F-E is the ultimate output 
of that.

To fill the data gaps and enhance the ‘empty’ and ‘incomplete’ G2F-E 
categories, we earlier proposed the application of three other hydrocli-
mate data sources: option (i) NSRDB; option (ii) DayMet; and option 
(iii) NWS. We first need to find the most consistent option with each 
G2F-E-m time series based on the root mean squared error (RMSE) 
metric and then use the selected option to replace the empty records 
in ‘empty’ experiments. Then, the fulfilled experiment is stored in the 
final G2F-E database. The same approach is applied to the ‘incomplete’ 
experiments to find the best option at each location for a given variable 
m. Then, the selected option and the ‘incomplete’ G2F time series for 
the given variable m are fed into the DNN model as predictors to sim-
ulate the missing samples. Finally, the improved G2F-E-m time series is 

transferred to the final improved G2F-E database. More details of the 
applied gap-filling methodology are explained in Sarzaeim et al. (2022) at 
Zenodo (doi:10.5281/zenodo.6299090).

Phenotype modeling
Recently there have been successful developments of statistical phenotype 
modeling by employing G×E interactions for technological advances in 
genotyping, phenotyping, and envirotyping (Van Eeuwijk et al., 2016). 
The G×E concept describes how different genotypes may respond dif-
ferently to similar environmental changes (Fig. 3). In other words, the 
phenotypes are not only influenced by genetic information, but they are 
outcomes of the complex gene and environment interactions (Fig. 3A). 
Figure 3B symbolizes hypothetical examples of the phenotypic responses 
from cultivars 1 to m exposed to the same environmental changes from 
environments 1 to n without conceptualization of G×E interactions. On 
the other hand, Fig. 3C indicates the phenotypic responses of cultivars 
with diverse G×E interactions. The complexity of modeling G×E stems 
from the high non-linear (see Fig. 3C) and high-dimensional (genotype 
1 to m and environment 1 to n) nature of the G×E interactions. Several 
statistical modeling efforts have been developed to increase the prediction 
skill of the crop phenotype models by incorporating high-dimensional 
genotypes and environmental information to capture G×E interac-
tions (for a review, see Van Eeuwijk et al., 2016). Jarquín et al. (2014) 
showed that incorporating genetic and environmental covariance ma-

Fig. 2. Flowchart of the methodology for the G2F-E evaluation–improvement pipeline. The pipeline (i) categorizes the G2F experiments, and (ii) fulfills and 
simulates ‘empty’ and ‘incomplete’ G2F-E time series. This methodology has been implemented for each of the 15 G2F-E variables, namely minimum 
temperature (Tmin), average temperature (Tmean), maximum temperature (Tmax), minimum dew point (DPmin), average dew point (DPmean), maximum dew 
point (DPmax), minimum relative humidity (RHmin), average relative humidity (RHmean), maximum relative humidity (RHmax), minimum solar radiation (SRmin), 
average solar radiation (SRmean), maximum solar radiation (SRmax), accumulative rainfall (Racc), average wind speed (WSmean), and average wind direction 
(WDmean).
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trices improved crop performance predictability. The covariance matrices 
provide the genetic similarity criterion between each pair of genotypes 
(in a genetic covariance matrix) and the environmental similarity crite-
rion between each pair of environments (in an environmental covariance 
matrix). Thus, in this study, we use the model developed by Jarquín et al. 
(2014) to predict maize yields using the multienvironment G2F datasets. 
The following paragraphs present the development process of modeling 
traits of complex crops, the main and interaction effects, and developed 
equations in more detail.

As mentioned earlier, crop yield is generally affected by the crop’s in-
formation, environmental conditions, as well as the complex interactions 
between gene and environment (Jarquín et al., 2014; Van Eeuwijk et al., 
2016; Bustos-Korts et al., 2018). Therefore, the simple baseline equation 
to model the phenotypes is as in Equation 1:

Pmn = µ+ En +Gm + (G × E)mn + εmn

m = 1, · · · , M and n = 1, · · · , N  (1)
where Pmn is the mean of phenotypic response (i.e. yield) of genotype m 
in environment n, μ is the overall phenotypic response from all observa-
tions, Gm is the main random effect of genome m, En is the main random 

effect of environment n, (G×E)mn is the interaction effect of genome m 
and environment n, and εmn is residual random error.

Genotyping technological advances and innovative sequencing 
methods have enabled the extraction of the high-intensity SNP ge-
netic variation of maize lines and analysis of segregation effects, which 
enhances the understanding of the genotype–phenotype relationship 
(Cobb et al., 2013). These advances led to incorporation of high-
intensity SNP variations of parent cultivars for maize hybrid m in the 
phenotypic simulation. Therefore, the Gm term in Equation 1 can be 
broken down into two terms, GP1,m and GP2,m. Then the updated equa-
tion is:

Pmn =µ+ En +GP1,m +GP2,m

+(GP1,m × GP2,m) + (GP1,m × En)
+(GP2,m × En) + (GP1,m × GP2,m × En) + εmn  

(2)
where, GP1,m and GP2,m are the random genomic main effects corre-
sponding to SNPs of parent 1 and parent 2 of genotype m, respectively; 
GP1,m×GP2,m is the specific combining ability of crossing parent 1 and 
parent 2 of genome m, GP1,m×En is the interaction effect of parent 1 and 
the nth environment, GP2,m×En is the interaction effect of parent 2 and 

Fig. 3. (A) Conceptualization of G×E interactions, and the visualization of phenotypic responses of (B) genotype 1 to m not interacting with environment 
1 to n, and (C) of genotype 1 to m interacting with environment 1 to n. Note that the rank of the superior genotype varies because of the G×E interactions 
across the environments. The upright and inverted triangle symbols in (C) indicate the change in ranks. If there is no change in the genotype’s rank, the 
symbol remains a circle. In (B), genotype m is the superior genotype across environments with the lack of G×E interactions. In (C), the rank of genotype 
m varies across environments and remains superior only in environment 3.
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the nth environment, and GP1,m×GP2,m×En is the interaction effect of the 
combined SNPs of parents and the nth environment.

By introducing covariance matrices, Jarquín et al. developed, validated, 
and recommended Equation 3 to predict a crop’s yield:

Pmn =µ+ En +GP1,m +GP2,m + Wmn

+ (GP1,m × GP2,m) + (GP1,m × En) + (GP2,m × En)
+ (GP1,m × GP2,m × En) + (GP1,m ×W )

+(GP2,m ×W ) + (GP1,m × GP2,m × Wn) + εmn  
(3)

where W is the main effect of the environmental factors modeled by 
using environmental covariables (ECs), GP1,m×Wn is the interaction effect 
of parent 1 and the environmental factors, GP2,m×Wn is the interaction 
effect of parent 2 and the environmental factors, GP1,m×GP2,m×W is the 
interaction effect of the combined SNPs of parents and the environ-
mental factors, with the following assumptions:

E ∼ N(0, σ2
E)  (4)

W ∼ N
(
0, ˙σ2

w

)
, where ˙ =

1
Q
WW ′

  (5)

GP1 ∼ N
Ä
0,Gσ2

g

ä
, where G =

1
P1
XX ′

  (6)

GP2 ∼ N
Ä
0,Gσ2

g

ä
, where G =

1
P2
XX ′

  (7)

ε ∼ N(0,σ2
ε)  (8)

where Ω is the covariance matrix describing the environmental similari-
ties between pairs of environments using ECs, Q is total number of ECs, 
W is random regression on ECs, G is the covariance matrix describing 
the similarities between maize lines using molecular markers, P1 and P2 
are the total number of maize molecular markers of parent 1 and parent 
2 (in our case P1=P2), respectively, and X is the genomic value of each 
maize marker. N (,) denotes a normal distribution.

For model fitting and simulation, the G2F database trials split into 
training and testing ensembles. The training set is observations used 
to train the G×E model, while the testing set is unobserved samples 
used to test the accuracy of the constructed model in the training step. 
The procedure for the G×E train and test for the simulation of yields 
uses the BGLR (Bayesian Generalized Linear Regression) R-package. 
BGLR has analyzed highly dimensional data where a predictand (here; 
maize yield) needs to be regressed on a large number of predictors 
(here; genotypes, environments, and their interactions) (Pérez and  
Campos, 2014).

G×E train–test set selection design
The accuracy of the statistical model’s performance relies on training 
datasets (Lobell and Burke, 2010; Gianola, 2021). Thus, we have designed 
three different trial selection schemes to evaluate the change rate of G×E 
predictive performance for the train–test set size in each scheme. Figure 

4 provides a step-by-step flowchart of these three approaches of selection 
of train–test experiments.

The first approach is ‘random-based’ experiment selection, through 
which the model is implemented in several iterations. In each iteration, 
the number of the test set is increased by five random environments. The 
rest of the trials become the training set. This procedure will continue 
until all experiments have been covered in the test dataset, and at least 
one experiment remains in the training set. After each iteration, the G×E 
model is implemented, and its efficiency is evaluated.

The following strategy for trial selection is built upon the ranked en-
vironmental similarities among the trials. As described earlier in Equation 
3, the environmental covariance values computed based on DNN-
enhanced weather covariates between each pair of the experiments are 
considered as environmental similarities criteria. The covariance is calcu-
lated as shown in Equation 9:

cov
(
ECx,ECy

)
=

∑(
ECx,t − ECx

) (
ECy,t − ECy

)
T  (9)

where, cov(ECx, ECy) is the environmental covariance value of EC time 
series between experiment x and y, ECx,t is the standardized values of 
ECs in experiment x on day t, ECy,t is the standardized values of ECs in 
experiment y on day t, ECx is the average of standardized ECs in experi-
ment x, ECy is the average of standardized ECs in experiment y, and T is 
the total number of time steps in day.

For the ‘covariance-based’ trial selection scheme, first we select one 
random trial and then calculate the environmental covariance between 
the chosen trial and the other remaining experiments: the more covari-
ance values, the stronger the environmental relationship (i.e. similarities). 
In the next step, experiments are sorted by the calculated environmental 
covariance values by size. In the first model-run iteration, the first four 
trials with the largest covariances (i.e. the first four most similar trials 
with the selected experiment) are chosen and assigned as the test set 
along with the first randomly selected experiment (i.e. five experiments), 
and the remaining experiments are kept as the training set. In the next 
iteration, the following five similar experiments are added on to the test 
set, and the remaining experiments are allocated to the training set. This 
process will continue until it covers all experiments as a test set and at 
least one in the training set.

The last train–test selection scheme focuses on the selection trials 
based on one single climate gradient in each experiment. Here we chose 
accumulative rainfall (Racc) during the growing season at each G2F trial 
location. In this approach, the experiments will first be sorted in decreas-
ing order based on the growing season Racc values. Then, in each training 
G×E iteration, five sorted experiments with larger Racc values will be 
added to the test set. The remaining experiments will be considered as the 
training set. In other words, the size of the test and train samples will in-
crease and decrease by five experiments, respectively, based on Racc values 
in the arranged experiments until they cover all experiments as the test 
set and at least one in the training set. This approach aims to identify the 
effect of a single climate driver such as Racc on G×E performance and 
the predictability of yields.

To evaluate the G×E model simulation on the test set in each iteration, 
four performance metrics will be discussed, which are coefficient of de-
termination (R2), RMSE, mean squared error (MSE), and mean absolute 
error (MAE), each of which is formulated as below (Willmott, 1982; Chai 
and Draxler, 2014):

R2
G×E,n =

∑L
l=1 (yobsn, m − y simn, m)

2

∑L
l=1 (yobs n, m − ŷn,m)

2

  (10)
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RMSEG×E,n =

Ã
1
L

L∑
l=1

(
yobsn,m − ŷsim n,m

)2

  (11)

MSEG×E,n =
1
L

L∑
l=1

(yobsn,m − ŷsim n.m)
2

  (12)

MAEG×E,n =
1
L

L∑
l=1

∣∣yobsn,m − ŷsim n,m
∣∣

  (13)

where, R2
G×E,n, RMSEG×E,n, MSEG×E,n, and MAEG×E,n are calculated G×E 

model R2, RMSE, MSE, and MAE for environment n, respectively; yobsn,m  
and ŷsimn,m is observed and simulated yield values for recorded individual 
genotype m in environment n, respectively; and L is total number of re-
corded m in environment n.

Results and discussion

G2F-E improvement

Among 112 G2F hybrid experiments in 2014–2017, the lo-
cation information (e.g. latitude and longitude) of 15 experi-

mental fields is missing. In addition, yield values of 11 trials have 
not been recorded. The G2F-E datasets from the remaining 
experiments (i.e. 86) are integrated into the evaluation–im-
provement sequence. Figure 5 illustrates the proportion of each 
category for each G2F-E variable. Among the environmental 
variables, G2F-E-RH is the most complete, with 80% com-
pleteness (i.e. 69 experiments), while there are several missing 
records in the G2F-E-SR published time series, with 49% 
completeness (i.e. 42 experiments).

The constructed evaluation–improvement pipeline shown 
in Fig. 2 categorizes and improves the environmental datasets, 
enabling the advantage of an enhanced three-dimensional da-
tabase consisting of improved environmental data and geno-
types and phenotypes from a more significant number of G2F 
experiments for yield prediction. The pipeline found that 32 
out of 86 G2F experiments contain all the climate variables 
completely assigned to the ‘complete’ category, meaning that 
480 datasets (=32 experiments×15 variables) are transferred to 
the final improved G2F-E database directly. The variables in-
cluded are minimum temperature (Tmin), average temperature 
(Tmean), maximum temperature (Tmax), minimum dew point 
(DPmin), average dew point (DPmean), maximum dew point 
(DPmax), minimum relative humidity (RHmin), average relative 
humidity (RHmean), maximum relative humidity (RHmax), min-
imum solar radiation (SRmin), average solar radiation (SRmean), 

Fig. 4. Trial selection design for ‘random-based’, ‘covariance-based’, and ‘climate-based’ approaches. Note: the total number of experiments used for 
G×E simulation is 84, which is explained in the text. Env., environments; No., number.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/73/15/5336/6565432 by guest on 16 April 2024



5344 | Sarzaeim et al.

maximum solar radiation (SRmax), accumulative rainfall (Racc), 
average wind speed (WSmean), and average wind direction 
(WDmean). Since the NSRDB, DayMet, and NWS do not 
provide wind gust data, the improvement of the G2F-E-WG 
datasets was not performed and was not considered for fur-
ther processing. In some cases, imperfect wind gust values are 
reported in the NWS database. However, they cannot be used 
in this study due to several missing values in NWS. Among 
the remaining G2F datasets associated with other experiments 
(86–32=54), 442 more ‘complete’ datasets are directly trans-
ferred to the final database. The DNN has used additional 181 
‘incomplete’ datasets for data gaps simulation (see the Materials 
and methods and Sarzaeim et al., 2022), and the subsequent 
datasets are ‘empty’ which have been filled as described earlier 
(Sarzaeim et al., 2022).

To complete the ‘empty’ experiments, the RMSE metric has 
been calculated (Sarzaeim et al., 2022) between each of the 
observed non-empty time series (including ‘complete’ and ‘in-
complete’) and the associated time series of available sources 
for variable m. For illustration, since DP values are accessible 
from NSRDB and NWS sources, the RMSE has been calcu-
lated between observed G2F-E-DP and each of NSRDB-DP 
and NWS-DP measurements at each G2F trial location. Then, 
the kernel density of the calculated pairwise RMSE values is 
plotted to recognize the best-fitted source to the G2F-E-DP 
measurements (see Fig. 6). The lower RMSE values (i.e. the 
x-axis) with higher probability (i.e. the y-axis), the better the  
source is fitted to the observed G2F-E-DP. By selecting  
the option with a greater probability of smaller deviation from 
G2F-E, we minimize the error introduced to the enhanced 
G2F-E database by other source replacements. Therefore, the 

source with more probable, lower RMSE values is selected to 
replace the data gaps in ‘empty’ G2F-E-DP. The same proce-
dure has been applied for other variables as well. Figure 6 illus-
trates the kernel density for the calculated RMSE between 
G2F-E and each NSRDB, DayMet, and NWS option for 
given climatic variable m. Based on the probability of RMSE 
values, the NSRDB was selected for gap fulfillment in ‘empty’ 
DP, SR, WS, and WD datasets. In contrast, DayMet was only 
selected to fulfill the R dataset, and NWS was not selected for 
any variable. This selection process based on the RMSE cri-
terion indicates that observed G2F-E datasets are more con-
sistent with the NSRDB database in general.

From the RMSE probability plots in Fig. 6, it is also worth 
mentioning that although G2F weather station devices located 
at experimental fields are initially calibrated with the nearest 
ASOS-NWS stations by G2F collaborators (McFarland et al., 
2020), and low RMSE values are expected between G2F and 
NWS time series; the NWS databases (station-based data) have 
remarkable deviations from the observed G2F-E time series 
compared with NSRDB and DayMet (gridded data). In other 
words, the gridded NSRDB and DayMet databases are in better 
agreement with G2F-E in terms of RMSE values (Fig. 6). It 
is noteworthy that G2F is a station-based database. Lowering 
the deviation between NWS and G2F records through regular 
calibration is required due to the sensitivity of the devices for 
accurate long-term measurements (Bojanowski et al., 2014).

For ‘incomplete’ time series improvement, we implemented 
DNNs for 58 SR, 30 T, 30 DP, 30 RH, 13 WS, 11 R, and 10 
WD datasets. Table 2 shows the DNN’s performance based on 
the RMSE metric for the test DNN population in the associ-
ated G2F experiment. The average, minimum, maximum, and 

Fig. 5. The rounded portion of completeness, incompleteness, and emptiness in G2F-E. The numbers in parentheses indicate the absolute number of 
datasets in each category for each variable: temperature (T), dew point (DP), relative humidity (RH), solar radiation (SR), rainfall (R), wind speed (WS), wind 
direction (WD), and wind gust (WG).
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SD of the RMSE performance metric have also been calcu-
lated and are presented in Table 2 for the given variable m. The 
calculated statistics shown in Table 2 indicate the low RMSE 
values in the DNN test population. The constrained diver-

gence indicates a high capability of DNN for the imputation 
of G2F-E missing records, particularly in Tmax, DPmean, RHmean, 
and SRmean time series regarding their associated average per-
formance metric values. The percentage improvement in 

Fig. 6. Kernel density of pairwise calculated RMSE values between observed G2F-E-m and NSRDB-m, DayMet-m, and NWS-m for variable m. Note: 
temperature (T) and relative humidity (RH) presented no data gaps, but the RMSE values are presented together with those for dew point (DP), solar 
radiation (SR), rainfall (R), wind speed (WS), wind direction (WD), and wind gust (WG).
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increasing the number of complete trials before and after the 
improvement process is 26% for T, 41% for DP, 25% for RH, 
105% for SR, 30% for R, 26% for WS, and 26% for WD. The 
number of complete observations after the improvement is 
86 for each variable, and the associated numbers of complete 
experiments before the improvement are listed in Fig. 5.

By applying the G2F-E evaluation–improvement meth-
odology described above (and in Sarzaeim et al., 2022), the 
number of total ‘complete’ G2F-E experiments increased from 
32 to 86 experiments. This means that we increased the en-
vironmental degrees of freedom (DF) by 54 (DFafter–DFbe-

fore=54). Now it is possible to feed a further 54 experimental 
trials and their datasets, including genomic, phenotypic, and 
environmental information, into the G×E model simulation 
process. In other words, the environment DF improvement is 
~169%. Increasing the number of experiments by gap filling 
of ‘empty’ and ‘incomplete’ environmental time series provides 
the opportunity of using not only the enhanced G2F-E but 
also G2F-G and G2F-P associated with those time series in 
the simulation process, which were not capable of being pro-
cessed in the simulation previously. Before the improvement 
process, we had 32 environments, 372 genotypes, and 3169 
phenotypic observations, which could be fed into the simu-
lation. After improving the dataset, we increased the number 
of environments, genotypes, and phenotypic observations up 
to 86, 376, and 8171, respectively. Below, we will evaluate the 
effect of this significant improvement in the number of total 
experiments in a multidimensional database reflected on G×E 
predictability performance.

G×E simulation and predictability evaluation

The enhanced DNN-G2F-E database (consisting of 86 
experiments) along with G2F-G molecular markers and 
G2F-P yield measurements are consistently controlled in 
terms of data availability in all three types of datasets for 
each trial before feeding into the G×E model and simula-
tion process (see Fig. 2). After this consistency control, we 
have 84 experiments capable of being employed as G×E’s 
model input. The criterion is to keep those experiments in 
the simulation process that all required that G2F-E, G2F-G, 
and G2F-P data are available in the database. In other words, 
there are two experiments that either their associated G2F-G 
or G2F-P information for all tested cultivars are not recorded 
in the G2F database.

The G×E model has been simulated by feeding 32 com-
plete experiments from the not improved (N.I.) database and 
84 DNN-improved (I.) environments. For model yield pre-
dictability evaluation, four model performance metrics, namely 
R2, RMSE, MSE, and MAE, have been calculated for each 
environment. The performance of the results of 32 common 
‘complete’ experiments’ are compared in Fig. 7 from N.I. and 
I. G×E implementations. The results generally show more ac-
curate G×E predictability from I. in comparison with N.I. (see 

the dashed horizontal lines). The mean R2 in all 32 common 
experiments is improved ~12.1%. The RMSE, MSE, and MAE 
measurements are also improved by 2.2, 11.4, and 1.4%, re-
spectively (Table 3). The improvement in the predictability of 
yields proves the hypothesis that G×E predictability increases 
with the DF of the environment data (in this case, from DFbe-

fore=32-1 to DFafter=84-1). While the efficiency metrics in 
Table 3 are spatiotemporal aggregates, Figs 7–10 illustrate how, 
for example, R2 varies across the study area. The improvement 
in the G×E model performance has been reported by Jarquín 
et al. (2014), who showed that the average model R2 increased 
12.9% when the interaction genotype by environment is in-
cluded. Acosta-Pech et al. (2017), Crossa et al. (2017), and 
Lopez-Cruz et al. (2015) have reported improvements in R2 
between 5% and 29% for maize yield prediction. These find-
ings support the thesis that enhancing climate data integrated 
into the environmental covariance matrices increases the pre-
dictive skill of G×E models. Further, a non-parametric t-test is 
applied to evaluate the metrics of the model’s performance be-
tween N.I. and I. The associated null hypothesis expresses that 
there is no significant difference between performance met-
rics of N.I. and I. implementations. The operation of the t-test 
evaluation uses the ‘stat.ttest_rel’ function from Python, setting 
a default P-value of 0.05. For an estimated significance level 
larger than the P-value, the null hypothesis is accepted. In other 
words, it can be concluded that there is no significant differ-
ence between N.I. and I. performance metrics. The calculated 
t-value and P-value for each performance metric are illustrated 
in Fig. 7. Since the calculated P-value is larger than the signif-
icance level (0.05) in all metrics, it is concluded that the en-
hancement is not statistically significant, despite predictability 
improvement in I. compared with N.I. scenarios. The possible 
reason for this insignificant predictability improvement may 
rely on the unbalanced G2F experimental design. This exper-
imental unbalancing refers to the ununiform distribution of 
experimental sample units (observations) among the trials. The 
number of observations varies between five (in 2014GAH1, 
2014NCH1, 2014TXH1, and 2014TXH2 trials) and 201 (in 
the 2014ONH2 trial). Thus, the model fitting is more affected 
by the trials with a larger number of observations.

The geospatial distribution of the I. scenario predictability 
is represented by the R2 metric in Fig. 8. The map shows that 
the G×E predictive skill is more accurate (represented by point 
size) in the northern part of the G2F layout, where, in most 
cases, the number of observations (represented by point color) 
is large.

In summary, the improvement in the environmental 
dataset provides the opportunity to increase the number 
of experimental sites and their associated ‘omics’ informa-
tion consideration for simulation procedure. Although this 
three-dimensional data improvement led to a marginal en-
hancement in G×E predictability, it revealed that the data-
base improvement is reflected by more accurate G×E yield 
prediction skills in terms of all R2, RMSE, MSE, and MAE 
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performance metrics. This result suggests the G×E can predict 
the phenotypes more accurately by expanding the number of 
observed sites. This result is also in line with previous find-
ings regarding the increase in ‘omics’ sample size, which led to 
better model performance (Auinger et al., 2021; Lopez-Cruz 
and de los Campos, 2021). The data enhancement enables the 
robustness of the G×E model to capture the gene by environ-
ment interactions more effectively.

G×E predictability in selection of train–test trial 
scenarios

We provide evidence of the contribution of the DNN-driven 
enhancement of climate data to the improvement of ‘omics’ 
databases and the predictability of maize yields. Three trial se-
lection designs, called ‘random-based’, ‘covariance-based’, and 
‘climate-based’, are implemented to quantify and identify the 

Fig. 7. G×E-based predictability comparing the initial 32 (N.I.=not improved) experiments and the completed 84 (I.=improved) experiments after filling all 
data gaps. Both N.I. and I. databases have been evaluated based on the efficiency indices: (A) R2, (B) RMSE, (C) MSE, and (D) MAE metrics. The vertical 
black lines show the difference between the efficiency indices before and after the improved data. The size of the markers is directly proportional to the 
improvement level for R2, and indirectly proportional to the other metrics. The t-value and P-value are based on the t-test statistic and significance level, 
respectively. Note: M.N.I.=mean of not improved (dashed orange line), and M.I.=mean of improved (dashed blue line).

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/73/15/5336/6565432 by guest on 16 April 2024



Climate data improvements for predictive maize phenomics  | 5349

factors that control the increase in phenotype predictability. 
Varying iterations formed the scenarios that emerged from a 
dominant test scenario to a prevailing training scenario. The 
scenarios gradually increase by five test sets (where the number 
of training set observations decreases by the same number) (see 
Fig. 4).

In the first iteration (iteration 1), five selective trials were 
allocated for testing, and the rest (84–5=79) remained in the 
training set. The largest training set is in iteration 1, and the 
smallest training set is associated with the last iteration (itera-
tion 16); the train and test set size is 4 and 80, respectively. 

The average R2 estimations for the tested experiments 
(the black line) in each iteration were calculated and illus-
trated in Fig. 9 for each selection scenario. Additionally, the 
average predictability of newly selected sets in an iteration 
through the last iteration is represented by the colored lines. 
The longest line is representative of the average of the first 
five selected test experiments remaining in the test set from 

iteration 1 through iteration 16. The next longest set is associ-
ated with the five newly selected test experiments in iteration 
2 through iteration 16. Note that in iteration 2, there are 10 
test experiments in total: five from iteration 1 and five from 
iteration 2. A similar explanation applies to the other lines in 
the plot. The model performance estimated by R2 shows im-
provement from iteration 16 to 1 in all test sample sizes in all 
selection scenarios. This result suggests that the model predict-
ability improves when more experiments are allocated to the 
training sets, from the smallest training set size in iteration 16 
(i.e. Sizetrain=4) to the largest training set size in iteration 1 (i.e. 
Sizetrain=79). Thus, a larger number of training samples leads to 
higher environmental variability in the simulations, leading to 
the improvement of the model’s predictability. These observa-
tions are also in line with general results from above; a larger 
number of observed environment sets can provide a larger 
training population size and, eventually, G×E predictive skill 
enhancement.

Table 3. The mean G×E model performance metrics in the N.I. and I. datasets, the minimum and maximum difference of G×E model 
performance metrics between N.I. and I. datasets, and the mean improvement percentage of the G×E model performance metrics

Performance metric Mean in N.I. Mean in I. Minimum difference Maximum difference Mean percentage change (%) 

R2 0.33 0.37 –0.10 0.95 12.1
RMSE 26.86 26.25 –23.09 1.75 2.2
MSE 848.72 751.58 –3089.18 91.16 11.4
MAE 20.93 20.63 –14.49 1.73 1.4

Note that the negative values for RMSE, MSE, and MAE show the improvement of the G×E model performance.

Fig. 8. Spatial distribution of G×E model predictability (R2) based on 84 DNN-based improvements in the G2F-E experiments. The color gradient 
represents the number of observations, and the size of the circles represents the R2 at each trial. The colored circles are transparent to distinguish 
multiple trials at the same location. Note: the circles with a black perimeter represent negative correlation values. No perimeter means positive correlation.
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In addition to the effect of changing training sets, the vari-
ability inherent in the environmental covariance structures in 
the training sets can be affected by the train and test selection 
strategy (i.e. random versus ranking versus the precipitation gra-
dient). For generally comparing the performance of selection 
scenarios in improvement of predictability, the linear model 
follows the averaged R2 values from iteration 1 to iteration 16. 
The largest absolute values of the slope (m) indicate the larg-
est improvement rate over the iterations. In other words, over 
Sizetrain, the largest improvement is reached in ‘random-based’ 
(m=0.012), ‘climate-based’ (m=0.009), and ‘covariance-based’ 
(m=0.002) scenarios, respectively. The reason behind that stems 
from the different levels of captured environmental variability 
in training ensembles. In both ‘climate-based’ and ‘covariance-
based’ scenarios, the selection strategy removes the most similar 

experiments from the training set and sums them to the test 
population. These strategies are built upon experiments with 
similar ranked Racc values in ‘climate-based’ and similar ranked 
environmental covariance values in ‘covariance-based’ designs. 
Also, in both approaches, the environmental variation among 
the retained experiments in the training set decreases gradually 
in response to possible climate patterns embedded in the com-
plex structure of the environmental covariance matrices. The 
climate information is aggregated, and no causality between 
climate and model performance is evident. These results agree 
with previous studies by Messina et al. (2018). These authors 
attributed the poor crop yield model performance to the low 
environmental variation, which concurs with that proposed 
here in the second objective. In another study, Rogers and 
Holland (2022) showed that decreasing environmental simi-
larity between train and test sets leads to a decrease in the G×E 
model predictability. Thus, the difference in the G×E predictive 
performance as evidenced by the ‘random-based’, ‘covariance-
based’, and ‘climate-based’ scenarios can be attributed to the 
skill gained by the training set; also found by Gianola (2021).

The ‘random-based’ and the ‘covariance-based’ scenarios in-
dicate improved predictability due to the consolidation of the 
climate and ‘omics’ databases. However, these improvements 
cannot build causality or create climate-driven phenotypic 
diagnostics or prognostics, such as geospatial or temporal attri-
butions of maize phenotypes to climate variability and change. 
The ‘climate-based’ scenario introduces climate variability by 
selecting environmental covariance structures by a gradient of 
precipitation. This simple construction addresses the random-
ness of the ‘random-based’, the incremental sequence of the 
‘covariance-based’ scenarios, and a gradual increase in rainfall, 
the main driver of the hydrologic cycle and an element of both 
the weather and climate systems. Through this scenario design, 
we suggest that areas and times with high rainfall influence the 
phenotypic prediction. Rojas et al. (2019) predicted that de-
clining rainfall in the coming decades will lead to 1–14% var-
iability of global cereal production. Maltais-Landry and Lobell 
(2012) associate a high rainfall variability with an increase in 
the inter-annual variability of yields. The Intergovernmental 
Panel on Climate Change (IPCC, 2001) has suggested the sce-
nario of increasing variability in rainfall for >25 years. How-
ever, it is unclear if crops will have the ability to adapt at a 
higher pace.

The ‘climate-based’ scenario illustrates the opportunity to 
quantify the improvements in predictability as larger variations 
in rainfall occur. Andresen et al. (2001) identified the rainfall 
and its variability as the major driver of maize inter-annual 
yield variability. The results in Fig. 9C illustrate a relatively 
consistent improving pattern from Sizetest=10 to Sizetest=40, 
which implies that the prediction accuracy of G×E is higher in 
experiments with larger Racc during the growing season. The 
consistent improvement in the predictability is only observed in 
the ‘climate-based’ scenario. The Racc records ranked decreas-
ingly are presented in Fig. 10. The vertical dashed line separates 

Fig. 9. The number of iterations (1–16) versus the averages of the 
coefficient of determination, R2, for test ensembles from 5 (in purple) to 
80 (in red). The three sampling schemes were (A) ‘random-based’, (B) 
‘covariance-based’, and (C) ‘climate-based.’ The number of iterations is 
explained as follows: if the number of samples equals 5, five experiments 
belong to the test ensemble, and the rest belong to the training set. The 
dashed line results from applying a linear regression model fitted to the 
total average values.
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the experiments with Sizetest ≤40 from the rest. The range of 
Racc is between max(Racc)=1525 mm in the ‘2016KSH1’ and 
min(Racc)=497 mm in the ‘2014TXH2’ experiment. The mod-
el’s consistent improvement in performance is reached with 
the accumulative rainfall value >497 mm. The Racc standard 
deviation for experiments groups with Racc ≥497  mm, and 
Racc <497, is 229, and 84 mm, respectively. These results show 
improved G×E predictability by introducing more variability 
in the training set. The change rate of R2 obtained by a rainfall 
gradient and the pattern of consistent improvement imply the 
contribution of a climatic variable (here, rainfall) in prediction 
enhancement, which suggests the exploration of other major 
climate covariates for consideration in the simulation proce-
dure. In Fig. 10, it can also be seen how geospatial rainfall var-
iability is reflected in model predictability. For example, model 
predictability in South Georgia experiments with smaller rain-
fall values outperforms that in the northern portion of the state 
with higher rainfall. This difference in model predictive skill in 
experiments with different rainfall values is another reason for 
the necessity for sensitivity analysis in order to find the vari-
ables with the most influence on model performance. While it 
is beyond the scope of this study to indicate the climate and 
genetic attributions of such variation, it reveals an opportunity 

to elucidate those attributions as potential sources of predict-
ability.

The generally better accuracy achieved by the ‘climate-based’ 
than the ‘covariance-based’ scenario illustrates a sequential and 
consistent improvement in the predictability of maize yields. The 
former shows the effect of the error introduced when all the 
environmental covariables are introduced in the simulation. In 
other words, model performance does not improve just by add-
ing climatic variables. Based on the elements of the discussion 
above, the environmental heterogeneity strengthens the model 
performance, but it will be more effective when the sensitivity of 
crop yields comes from environmental variables such as rainfall. 
As explained earlier in this research and other studies, crop yield 
is affected by climatic variables at different levels (Meyer et al., 
1991; Romay et al., 2010; Zhao et al., 2015). Yet, this study intro-
duces what climate variability across spatiotemporal scales and 
emerging patterns may offer to the diagnostics and prognostics 
of a plant’s ability to adapt to changes in climate.

Conclusions

In this study, we assessed the performance change of the statis-
tical G×E model for maize yield prediction for (i) the train–

Fig. 10. Spatial distribution and decreasingly sorted Racc (colored gradients) and R2 (same as in Fig. 8). The vertical dashed line separates the 
experiments with a consistent improvement pattern as observed in Fig. 9C. The color code (mm) in the lower panel matches the color code of the circles 
in the map. The colored circles are transparent to distinguish multiple trials at the same location. Note: as in Fig. 8, the circles with a black perimeter 
represent negative correlation values. No perimeter means positive correlation.
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test population size and (ii) the train–test structure designs. The 
G2F initiative releases a comprehensive database consisting of 
genetic, phenotypic, and environmental data of several maize 
hybrids for G×E modeling and simulation. Despite the efforts 
in recording databases without missing elements, there are sev-
eral gaps and missing records throughout the G2F-E time series. 
The missing data affect all the three-dimensional data coverage, 
including environmental and ‘omics’ information in modeling 
and simulation procedures. To tackle this problem, we designed 
an evaluation–improvement pipeline to categorize the envi-
ronmental datasets into ‘complete’, ‘empty’, and ‘incomplete’ 
groups, then replaced the data gaps in the ‘empty’ datasets 
and simulated missing samples in the ‘incomplete’ datasets by 
employing DNNs. Thus, the number of total observed experi-
ments for G×E simulation upgrades from 32 to 84, enabling the 
improvement of genotypes from 372 to 376 and yield obser-
vations from 3169 to 8171. This improvement in three datas-
ets resulted in a 12.1% improvement in predictability of maize 
yield values in terms of R2 measurement. The RMSE, MSE, and 
MAE measurements improved by 2.2, 11.4, and 1.4%, respec-
tively. The data can be found in Sarzaeim et al. (2022).

In conclusion, any improvement in environmental or ‘omics’ 
databases will lead to a better G×E predictive skill. Addition-
ally, the statistically insignificant G×E predictability enhance-
ment suggests more DFs for remarkable simulation accuracy. 
On the other hand, we examined the G×E prediction skill 
in three train–test selection experiments scenarios which are 
called ‘random-based’, ‘covariance-based’, and ‘climate-based’ 
schemes. The model performance is enhanced with a larger 
Sizetrain in all mentioned approaches due to more variability to 
which the model is exposed in the training set structure. The 
‘random-based’ scenario achieved the best improvement rate 
of 0.012. This improvement indicates that environmental var-
iability is a key driver of phenotype predictability within the 
training set experiments as we compared ‘climate-based’ and 
‘covariance-based’ scenarios. Thus, larger Sizetrain in the ‘ran-
dom-based’ scenario leads to a larger environmental variation 
to the G×E model because of the built train–test selection strat-
egies. Also, the consistent improvement pattern observed in the 
‘climate-based’ scenario, in which the trials are selected based 
on ranked accumulative rainfall, evidences the different levels of 
effectiveness of climate variables in yield predictive skill and the 
environmental variation introduced to the model by them. En-
vironmental variability contributes to enhancing predictability 
through the use of more effective variables such as rainfall. The 
results suggest that environmental variables such as rainfall (i.e. 
soil moisture) will enhance environmental covariates, leading to 
improvements in phenotype predictability.

Future work

The results found in this study can nurture further efforts 
to improve G×E analytics and predictability by enhancing 

hydroclimate analytics as follows: (i) further analyze mul-
tiple levels of digital climate and hydrologic data to improve 
model predictability, coupling a Global Sensitivity Analysis 
with G×E analytics; such a coupling will contribute to elu-
cidating the environmental variables that increase the pre-
dictability of maize yields and to what extent; (ii) identify 
geospatial patterns of variability, designing geospatial visu-
alization and aggregation analyses based on climate selec-
tion schemes to provide regional G×E yield predictability 
improvements; and (iii) develop robust response software 
architectures for multidimensional database management 
and visualization, and multi-lead-time phenotype predictive 
systems.

Acknowledgements

We thank the Genomes to Fields (G2F) initiative for providing the exper-
imental platform that created the original database. We also acknowledge 
the support from Quantifying Life Sciences Initiative at the University 
of Nebraska-Lincoln and Holland Computing Center of the University 
of Nebraska. 

Author contributions

PS: data curation; PS and FM-A: formal analysis, methodology, visualiza-
tion, writing—original draft; FM-A: conceptualization, funding acquisi-
tion, project administration, supervision, writing—review & editing; DJ: 
supervision, methodology, writing—review & editing.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work is supported by the Plant Health and Production and Plant 
Products: Plant Breeding for Agricultural Production, grant no. NEB-21-
176/project accession no.1015252 from the USDA National Institute of 
Food and Agriculture.

Data availability

The data that support the findings of this study are openly available in 
Zenodo at https://doi.org/10.5281/zenodo.6299090 (Sarzaeim et al., 
2022).

References
Acosta-Pech R, Crossa J, de los Campos G, Teyssèdre S, Claustres 
B, Pérez-Elizalde S, Pérez-Rodríguez P. 2017. Genomic models with 
genotype × environment interaction for predicting hybrid performance: 
an application in maize hybrids. Theoretical and Applied Genetics 130, 
1431–1440.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/73/15/5336/6565432 by guest on 16 April 2024

https://doi.org/10.5281/zenodo.6299090


Climate data improvements for predictive maize phenomics  | 5353

Alexandratos N, Bruinsma J. 2012. World Agriculture towards 2030/2050: 
The 2012 Revision. ESA Working paper No. 12-03. Rome: FAO.

Amaranto A, Munoz-Arriola F, Corzo G, Solomatine DP, Meyer G. 
2018. Semi-seasonal groundwater forecast using multiple data-driven mod-
els in an irrigated cropland. Journal of Hydroinformatics 20, 1227–1246.

Amaranto A, Munoz-Arriola F, Solomatine DP, Corzo G. 2019. A spa-
tially enhanced data-driven multimodel to improve semiseasonal ground-
water forecasts in the high plains aquifer, USA. Water Resources Research 
55, 5941–5961.

Amaranto A, Pianosi F, Solomatine DP, Corzo G, Muñoz-Arriola F. 
2020. Sensitivity analysis of data-driven groundwater forecasts to hydro-
climatic controls in irrigated croplands. Journal of Hydrology 587, 124957.

Amato F, Guignard F, Robert S, Kanevski M. 2020. A novel framework 
for spatio-temporal prediction of environmental data using deep learning. 
Scientific Reports 10, 22243. 

Andresen JA, Alagarswamy G, Alan Rotz C, Ritchie JT, LeBaron AW. 
2001. Weather impacts on maize, soybean, and alfalfa production in the 
Great Lakes region, 1895–1996. Agronomy Journal 93,1059–1070.

Auinger HJ, Lehermeier C, Gianola D, Mayer M, Melchinger AE, Silva 
S, Knaak C, Ouzunova M, Schön CC. 2021. Calibration and validation of 
predicted genomic breeding values in an advanced cycle maize population. 
Theoretical and Applied Genetics 134, 3069–3081.

Baril CP, Denis JB, Wustman R, van Eeuwijk FA. 1995. Analysing gen-
otype by environment interaction in Dutch potato variety trials using factorial 
regression. Euphytica 82, 149–155.

Bojanowski JS, Vrieling A, Skidmore AK. 2014. A comparison of data 
sources for creating a long-term time series of daily gridded solar radiation 
for Europe. Solar Energy 99, 152–171.

Bustos-Korts D, Romagosa I, Borràs-Gelonch G, Casas AM, Slafer 
GA, van Eeuwijk F. 2018. Genotype by environment interaction and ad-
aptation. In: Meyers R, ed. Encyclopedia of sustainability science and tech-
nology. New York: Springer. 

Chai T, Draxler RR. 2014. Root mean square error (RMSE) or mean abso-
lute error (MAE)? Geoscientific Model Development 7, 1247–1250.

Cobb JN, DeClerck G, Greenberg A, Clark R, McCouch S. 2013. Next-
generation phenotyping: requirements and strategies for enhancing our un-
derstanding of genotype–phenotype relationships and its relevance to crop 
improvement. Theoretical and Applied Genetics 126, 867–887.

Crossa J, Pérez-Rodríguez P, Cuevas J, et al. 2017. Genomic selec-
tion in plant breeding: methods, models, and perspectives. Trends in Plant 
Science 22, 961–975.

Duvick DN. 2005. Genetic progress in yield of United States maize (Zea 
mays L.). Maydica 50,193–202.

Finlay KW, Wilkinson GN. 1963. The analysis of adaptation in a plant-
breeding programme. Australian Journal of Agricultural Research 14, 
742–754.

Ghimire S, Deo RC, Raj N, Mi J. 2019. Deep learning neural networks 
trained with MODIS satellite-derived predictors for long-term global solar 
radiation prediction. Energies 12, 2407.

Gianola D. 2021. Opinionated views on genome-assisted inference and 
prediction during a pandemic. Frontiers in Plant Science 12, 717284. 

Hayes PM, Liu BH, Knapp SJ, et al. 1993. Quantitative trait locus effects 
and environmental interaction in a sample of North American barley germ 
plasm. Theoretical and Applied Genetics 87, 392–401.

Hernández E, Sanchez-Anguix V, Julian V, Palanca J, Duque N. 
2016. Rainfall prediction: a deep learning approach. In: Martínez-Álvarez 
F., Troncoso A., Quintián H., Corchado E, eds. Hybrid artificial intelligent 
systems. HAIS 2016. Lecture notes in computer science, vol. 9648. Cham: 
Springer, 151–162.

Hoogenboom G. 2000. Contribution of agrometeorology to the simulation 
of crop production and its applications. Agricultural and Forest Meteorology 
103, 137–157.

Howard R, Carriquiry AL, Beavis WD. 2014. Parametric and non-
parametric statistical methods for genomic selection of traits with 

additive and epistatic genetic architectures. G3 Genes, Genomes, Genetics 
4,1027–1046.

IPCC. 2001. Climate change 2001: the scientific basis. Cambridge: 
Cambridge University Press.

Jarquín D, Crossa J, Lacaze X, et al. 2014. A reaction norm model for 
genomic selection using high-dimensional genomic and environmental 
data. Theoretical and Applied Genetics 127, 595–607.

Jarquín D, da Silva CL, Gaynor RC, Poland J, Fritz A, Howard R, 
Battenfield S, Crossa J. 2017. Increasing genomic-enabled prediction 
accuracy by modeling genotype × environment interactions in Kansas 
wheat. The Plant Genome 10, doi:10.3835/plantgenome2016.12.0130.

Jarquín D, de Leon N, Romay C, et al. 2021. Utility of climatic information 
via combining ability models to improve genomic prediction for yield within 
the genomes to fields maize project. Frontiers in Genetics 11, 592769.

Kumar A, Ramsankaran R, Brocca L, Munoz-Arriola F. 2019. A ma-
chine learning approach for improving near-real-time satellite-based rainfall 
estimates by integrating soil moisture. Remote Sensing 11, 2221.

Kumar A, Ramsankaran R, Brocca L, Muñoz-Arriola F. 2021. A simple 
machine learning approach to model real-time streamflow using satellite 
inputs: demonstration in a data scarce catchment. Journal of Hydrology 
595, 126046.

Lawrence-Dill CJ, Schnable PS, Springer NM. 2019. Idea factory: the 
maize genomes to fields initiative. Crop Science 59, 1406–1410.

Lobell DB, Burke MB. 2010. On the use of statistical models to predict 
crop yield responses to climate change. Agricultural and Forest Meteorology 
150, 1443–1452.

Lobell DB, Cassman KG, Christopher BF. 2009. Crop yield gaps: their 
importance, magnitudes, and causes. Annual Review of Environment and 
Resources 34, 179–204.

Long N, Gianola D, Rosa GJM, Weigel KA. 2011. Application of sup-
port vector regression to genome-assisted prediction of quantitative traits. 
Theoretical and Applied Genetics 123, 1065–1074. 

Lopez-Cruz M, Crossa J, Bonnett D, Dreisigacker S, Poland J, 
Jannink JL, Singh RP, Autrique E, de los Campos G. 2015. Increased 
prediction accuracy in wheat breeding trials using a marker × environment 
interaction genomic selection model. G3: Genes, Genomes, Genetics 5, 
569–582. 

Lopez-Cruz M, de los Campos G. 2021. Optimal breeding-value predic-
tion using a sparse selection index. Genetics 218, iyab030.

Maltais-Landry G, Lobell DB. 2012. Evaluating the contribution of 
weather to maize and wheat yield trends in 12 U.S. counties. Agronomy 
Journal 104, 301–311.

Matthews RB, Rivington M, Muhammed S, Newton AC, Hallett PD. 
2013. Adapting crops and cropping systems to future climates to ensure 
food security: the role of crop modelling. Global Food Security 2, 24–28.

Mbungu WB, Mahoo HF, Tumbo SD, Kahimba FC, Rwehumbiza FB, 
Mbilinyi BP. 2015. Using climate and crop simulation models for assessing 
climate change impacts on agronomic practices and productivity. In: Lal R., 
Singh B., Mwaseba D., Kraybill D., Hansen D., Eik L, eds. Sustainable inten-
sification to advance food security and enhance climate resilience in Africa. 
Cham: Springer, 201–2019

McFarland BA, Alkhalifah N, Bohn M, et al. 2020. Maize Genomes to 
Fields (G2F): 2014–2017 field seasons: genotype, phenotype, climatic, soil, 
and inbred ear image datasets. BMC Research Notes 13, 71.

Messina CD, Technow F, Tang T, Totir R, Gho C, Cooper M. 2018. 
Leveraging biological insight and environmental variation to improve phe-
notypic prediction: integrating Crop Growth Models (CGM) with Whole 
Genome Prediction (WGP). European Journal of Agronomy 100, 151–162.

Meuwissen THE, Hayes BJ, Goddard ME. 2001. Prediction of total 
genetic value using genome-wide dense marker maps. Genetics 157, 
1819–1829.

Meyer SJ, Hubbard KG, Wilhite DA. 1991. The relationship of climatic in-
dices and variables to corn (maize) yields: a principal components analysis. 
Agricultural and Forest Meteorology 55, 59–84.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/73/15/5336/6565432 by guest on 16 April 2024

https://doi.org/10.3835/plantgenome2016.12.0130


5354 | Sarzaeim et al.

Olesen JE, Jensen T, Petersen J. 2000. Sensitivity of field-scale winter 
wheat production in Denmark to climate variability and climate change. 
Climate Research 15, 221–238.

Osei MK, Asante MD, Agyeman A, Adebayo MA, Adu-Dapaah H. 
2014. Plant breeding: a tool for achieving food sufficiency. In: Nandwani D, 
ed. Sustainable horticultural systems. sustainable development and biodi-
versity, vol 2. Cham: Springer, 253–274. 

Pérez P, de los Campos G. 2014. Genome-wide regression and predic-
tion with the BGLR statistical package. Genetics 198, 483–495.

Quiñones R, Munoz-Arriola F, Choudhury SD, Samal A. 2021. Multi-
feature data repository development and analytics for image cosegmenta-
tion in high-throughput plant phenotyping. PLoS One 16, e0257001.

Raoufi RS, Soufizadeh S. 2020. Simulation of the impacts of climate 
change on phenology, growth, and yield of various rice genotypes in humid 
sub-tropical environments using aquacrop-rice. International Journal of 
Biometeorology 64, 1657–1673.

Ray DK, Gerber JS, MacDonald GK, West PC. 2015. Climate variation 
explains a third of global crop yield variability. Nature Communications 6, 
5989.

Rogers AR, Holland JB. 2022. Environment-specific genomic predic-
tion ability in maize using environmental covariates depends on envi-
ronmental similarity to training data. G3 Genes, Genomes, Genetics 12, 
jkab440.

Rojas M, Lambert F, Ramirez-Villegas J, Challinor AJ. 2019. 
Emergence of robust precipitation changes across crop production areas 
in the 21st century. Proceedings of the National Academy of Sciences, USA 
116, 6673–6678.

Romay MC, Malvar RA, Campo L, Alvarez A, Moreno-González J, 
Ordás A, Revilla P. 2010. Climatic and genotypic effects for grain yield in 
maize under stress conditions. Crop Science 50, 51–58.

Sarzaeim P, Jarquin D, Muñoz-Arriola F. 2020. Analytics for climate-
uncertainty estimation and propagation in maize-phenotype predictions. 
2020 ASABE Annual International Meeting, Omaha, NE, USA, July 12–15 
doi: 10.13031/aim.202000884.

Sarzaeim P, Muñoz-Arriola F, Jarquin D. 2022. Large-scale and 
multi-dimensional climate, genetics, and phenotypes database for maize 

yield predictability in the U.S. and Canada (version 1) [Dataset]. Zenodo 
doi:10.5281/zenodo.6299090.

Sengupta M, Xie Y, Lopez A, Habte A, Maclaurin G, Shelby J. 
2018. The National Solar Radiation Data Base (NSRDB). Renewable and 
Sustainable Energy Reviews 89, 51–60.

Shekhar S, Colleti J, Munoz-Arriola F, Ramaswamy L, Krintz C, 
Varshney L, Richardson D. 2017. Intelligent infrastructure for smart ag-
riculture: an integrated food, energy and water system. arXiv:1705.01993. 
2017arXiv170501993S. [Preprint].

Stehfest E, Heistermann M, Priess JA, Ojima DS, Alcamo J. 2007. 
Simulation of global crop production with the ecosystem model DayCent. 
Ecological Modelling 209, 203–219.

Tao F, Yokozawa M, Liu J, Zhang Z. 2008. Climate–crop yield relation-
ships at provincial scales in China and the impacts of recent climate trends. 
Climate Research 38, 83–94.

TASSEL. 2019. Maizegenetics Tassel 5 Source. https://bitbucket.org/
tasseladmin/tassel-5-source/wiki/UserManual/NumericalGenotype/
NumericalGenotype. Accessed April 2021.

TASSEL. 2021. Tasseladmin/ Tassel 5 Source/ Wiki/ Home — Bitbucket. 
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Home. Accessed 
October 2021.

Thornton PE, Thornton MM, Mayer BW, Wei Y, Devarakonda R, Vose 
RS, Cook RB. 2018. Data from: Daymet: daily surface weather data on 
a 1-km grid for North America,. https://daac.ornl.gov/DAYMET/guides/
Daymet_Daily_V4.html

Tilman D, Balzer C, Hill J, Befort BL. 2011. Global food demand and 
the sustainable intensification of agriculture. Proceedings of the National 
Academy of Sciences, USA 108, 20260–20264.

Van Eeuwijk FA, Bustos-Korts DV, Malosetti M. 2016. What should stu-
dents in plant breeding know about the statistical aspects of genotype × 
environment interactions? Crop Science 56, 2119–2140.

Willmott CJ. 1982. Some comments on the evaluation of model perfor-
mance. Bulletin of the American Meteorological Society 63, 1309–1313.

Zhao J, Guo J, Mu J. 2015. Exploring the relationships between climatic 
variables and climate-induced yield of spring maize in Northeast China. 
Agriculture, Ecosystems & Environment 207, 79–90.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/73/15/5336/6565432 by guest on 16 April 2024

https://doi.org/10.13031/aim.202000884
https://doi.org/10.5281/zenodo.6299090
http://adsabs.harvard.edu/abs/2017arXiv170501993S
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/UserManual/NumericalGenotype/NumericalGenotype
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/UserManual/NumericalGenotype/NumericalGenotype
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/UserManual/NumericalGenotype/NumericalGenotype
https://bitbucket.org/tasseladmin/tassel-5-source/wiki/Home
https://daac.ornl.gov/DAYMET/guides/Daymet_Daily_V4.html
https://daac.ornl.gov/DAYMET/guides/Daymet_Daily_V4.html

