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Abstract
Application of crop growth models (CGMs) in plant breeding is limited by the

large number of candidate cultivars that breeders work with and the large number

of CGM parameters that affect cultivar performance. The objectives of this study

were to (1) calibrate 15 publicly available maize hybrids in Agricultural Produc-

tion Systems sIMulator and quantify prediction accuracy in modeling physiological

trait differences (yield, biomass, phenology, etc.) among genotypes; (2) better under-

stand minimum phenotypic data requirements for CGM cultivar calibration to inform

breeding efforts; and (3) quantify simulated genotype by environment interactions

(G × E) across years for five traits. We calibrated hybrids with two years of multi-

trait, temporal field measurements. The R2 of simulated versus observed phenotypes

was 0.89 for grain yield and over 0.80 for half of all other simulated traits. Phenol-

ogy parameters accounted for nearly half of the variability in grain yield. Average

(across traits) normalized root mean square error was reduced from 35% to 30%

with calibration based on phenological measurements and was reduced to 20% with

inclusion of physiological and nitrogen-related measurements such as radiation use

efficiency and grain nitrogen. Long-term simulations demonstrated distinct G × E

among the hybrids which accounted for 2%–29% of the total genetic variation across

traits. Parameter values derived in this work will provide insight regarding important

physiological traits for further phenotyping, selection, and understanding of G × E.

These calibrations are for publicly available hybrids, which are currently lacking.

Abbreviations: APSIM, Agricultural Production Systems sIMulator;

CGM, crop growth model; ex-PVP, expired plant variety protection

certificate; G2F, Genomes to Fields; G × E, genotype by environment

interaction; LAI, leaf area index; NRMSE, normalized root mean square

error; RUE, radiation use efficiency.
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1 INTRODUCTION

The need to increase yields by 2050 to meet predicted global

food production demand (Godfray et al., 2010; Mueller et al.,

2012; Ray et al., 2013) warrants new tools and methods to

improve agronomics and breeding. The goal of plant breed-

ers is to develop and select high performing, stable varieties

for specific target environments. Genotype by environment
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interactions (G × E) is common, making such a goal difficult

to attain. Therefore, the prediction of G × E is of practical

importance for improved selection of high performing cul-

tivars across highly variable environments. Extensive work

has been done to develop statistical, descriptive models and

methods for evaluating G × E. Studies have explored adop-

tion of genomic selection models for use in predicting G ×
E by attributing environment-specific effects to the markers

(Crossa et al., 2016; Schulz-Streeck et al., 2013), introduc-

ing environmental covariates (Heslot et al., 2014; Jarquin

et al., 2014; Malosetti et al., 2016), or modeling environ-

mental covariances (Burgueno et al., 2012). In most cases,

these approaches reduce G × E to linear relationships between

varieties and only a few major environmental covariates, not

allowing for complex interactions. These linear statistical

models limit prediction to environments that are similar to

those already observed.

Dynamic, process-based crop growth models (CGMs)

provide a framework for understanding G × E with the

incorporation of biological knowledge, thereby offering inter-

pretive and predictive potential beyond purely descriptive

statistical models (Hammer et al., 2006; Technow et al.,

2015). Prediction of environmental-specific performance is

challenged by the biological complexities associated with

genetic factors, environmental effects, agronomic practices,

and their interactions (Hammer et al., 2006). CGMs attempt

to unravel such complexity and provide an opportunity to

explore, through simulation, the processes underlying the

interactions and the consequences associated with breeding

and agronomics (Chenu et al., 2017; Hammer et al., 2014). In

CGMs, plant and soil knowledge are integrated using a series

of equations and coefficients to quantify elements known to

be variable across cultivars and soils.

Historically, physiological knowledge was used to pro-

vide explanations for improvement already achieved from

direct selection on yield as opposed to guiding future crop

improvement (Donald, 1968). Nearly 30 years ago, Jackson

et al. (1996) and Shorter et al. (1991) highlighted the need

for collaborative efforts among crop physiologists and plant

breeders while using crop models as a basis for integration.

Since then, successful applications of CGMs in plant breed-

ing have been demonstrated including designing multiple

trait ideotypes (Dingkuhn et al., 1993; Haverkort & Kooman,

1997), evaluating breeding strategies (Chapman et al., 2003;

Messina et al., 2011), characterizing G × E by understanding

how the interactions arise during crop growth and develop-

ment (Bustos-Korts et al., 2019), predicting observed G × E

through imputation of genetic parameters (Mavromatis et al.,

2001), evaluating phenotyping strategies and the incorpora-

tion of component trait data to improve genomic prediction

(Bustos-Korts et al., 2019; van Eeuwijk et al., 2019), char-

acterizing environments relative to stress (Chapman et al.,

2000; Loffler et al., 2005), understanding crop production

Core Ideas
∙ Calibration of 15 public maize hybrids within

APSIM using multi-trait time series data.

∙ Compared to no calibration, phenology data

reduced average across-trait and hybrid NRMSE

from 35% to 30% and crop growth data reduced it

to 20%.

∙ APSIM simulated G × E proportions of variance

and trends observed by breeders for several traits

across 20 years.

implications of various management strategies (Kheir et al.,

2021), and integrating CGMs with whole-genome prediction

(Cooper et al., 2016; Messina et al., 2018; Technow et al.,

2015). Recent studies also suggest the use of detailed genomic

information and a well-structured CGM to statistically impute

key parameters, facilitating CGM calibration at the scale of a

breeding population (Cooper et al., 2016; Cooper, Messina,

et al., 2014; Messina et al., 2018). Imputation approaches

alleviate the need for large amounts of extensive phenotypic

data for cultivar-specific parameter calibration, but put added

pressure on the structure of the CGM to be both biologi-

cally sound and parsimonious (Hammer et al., 2019). The

benefit CGMs can provide to plant breeding largely depends

on the structure of the CGM and whether the CGM algo-

rithms appropriately capture the physiological determinants

underlying genetic variation for traits of interest, such as yield

(Cooper et al., 2016, 2009; Hammer et al., 2019).

Existing applications of CGMs in plant breeding, as well

as many management-oriented uses of CGMs, rely heavily

on generic cultivars and a simulated subset of hybrid-

specific model parameters. In many approaches, modelers

have grouped cultivars by maturity zones and calibrated

generic, modern cultivars with many presumed parameters

for use across environments (Archontoulis et al., 2014; Boote

et al., 2003; Yang et al., 2004). This approach ignores

many sources of physiological variation among cultivars

beyond phenology. Other studies have gone a step further

and included subsets of specific parameters as latent vari-

ables, thereby leveraging the knowledge embedded in the

CGM to understand phenotypes that are difficult to measure

directly (Cooper et al., 2016; Messina et al., 2018; Technow

et al., 2015). However, few publicly available, comprehensive

cultivar calibrations exist. Empirical calibration of cultivars

requires intense phenotyping to estimate large numbers of

CGM parameters intertwined in complex processes affect-

ing cultivar performance. Relating the phenotypic data to

such CGM parameters is another challenge (Cooper, Gho,

et al., 2014; Hammer et al., 2019; Messina et al., 2011, 2018;
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van Eeuwijk et al., 2019). The large number of parame-

ters and the labor required limits the number of cultivars

for which a complete calibration can be obtained, explaining

why few comprehensive calibrations exist. Cultivar cali-

brations would enable additional applications and improve

connections among modelers, physiologists, and plant breed-

ers (Hammer et al., 2010; Struik et al., 2007). Future advances

in high-throughput phenomics (Reynolds et al., 2020) offer

the potential to generate increased quantity and quality of data

to improve cultivar-specific calibration (Furbank & Tester,

2011). Nevertheless, the lack of empirical, fully-calibrated

cultivars creates potential gaps in our ability to test model

structure and rigor with respect to all cultivar-specific param-

eters. Detailed, empirical calibrations will enable evaluation

of the ability and limitations of CGMs to accurately simu-

late observed differences among modern cultivars and predict

G × E.

A step toward improving connections between plant breed-

ing and crop modeling and assessing the CGM structural

validity for fitting across genotypes and environments is to

collect comprehensive, precise phenotypes and subsequently

calibrate a CGM for extensively studied public hybrids.

This approach will familiarize plant breeders with the data

requirements and potential benefits of CGMs, while test-

ing the model fit accuracy and ability to simulate plausible,

expected phenotypic responses across genotypes (Hammer,

2020). Developing parameter values for publicly available

ex-PVP (expired Plant Variety Protection certificate) maize

hybrids is significant because genotypic marker data and pedi-

gree information are readily available and could be used to

establish relationships between underlying genetics and cul-

tivar parameters. Despite no longer being used by farmers

today, public-sector institutions rely on public hybrids for

research purposes and have generated large amount of data

from genetic diversity analyses and genome-wide association

studies (Beckett et al., 2017; Kusmec et al., 2021; Romay

et al., 2013). Public hybrids are often used in collabora-

tive, multi-institutional trials such as those conducted under

the Genomes to Fields Initiative (G2F; genomes2fields.org),

providing open-access to phenotypic data across diverse

environments (McFarland et al., 2020). Currently, trait data

collected in most plant breeding trials (grain yield, grain mois-

ture, plant height, lodging, and flowering date) are not enough

to calibrate hybrids for use in CGMs (Archontoulis et al.,

2020; Cooper et al., 2016).

Using the Agricultural Production Systems sIMulator

(APSIM) maize, a model recently upgraded with additional

physiological mechanisms to accommodate breeding research

(Hammer et al., 2010; Soufizadeh et al., 2018), our objective

was to develop parameter values for ex-PVP hybrids for which

genotypic data are available. Our specific objectives were to

(1) calibrate APSIM for 15 publicly available maize hybrids

T A B L E 1 Number of locations each hybrid was grown and field

data collected

Hybrid 2017 2018
B73 × Mo17 1 2

B73 × PHM49 1 2

B73 × PHZ51 1 2

B73 × LH185 0 2

LH195 × Mo17 0 2

LH195 × PHM49 1 2

LH195 × PHZ51 1 2

LH195 × LH185 1 2

PHW52 × Mo17 0 2

PHW52 × PHM49 1 2

PHW52 × PHZ51 1 2

PHW52 × LH185 1 2

PHJ40 × LH82 1 0

PHZ51 × LH145 1 0

LH145 × LH162 1 0

and quantify prediction accuracy in modeling physiological

trait differences among genotypes; (2) better understand min-

imum data requirements for accurate model calibration to

inform breeding efforts; and (3) quantify G × E across many

years for five traits: grain yield, grain nitrogen (N) concentra-

tion, harvest index, maximum leaf area index (LAImax), and

flowering time.

2 MATERIALS AND METHODS

2.1 Maize hybrids

The 15 hybrids used in this study were assembled from

11 ex-PVP inbreds developed and grown in the U.S. Corn

Belt (Table S1). Twelve of the hybrids were chosen because

they are grown widely in the G2F project, providing access

to performance data from a range of 21–136 year × location

environments across the United States (Anderson et al., 2019;

Gage et al., 2017; Lawrence-Dill et al., 2019; McFarland et al.,

2020; Sekhon et al., 2020). A subset of the 15 hybrids consti-

tuted a factorial mating design of three females: B73, LH195,

and PHW52, and four males: PHZ51, LH185, PHM49, and

Mo17. Twelve of the 15 hybrids were grown in the first year

(2017), and a modified set of 12 hybrids were grown in the

second year (2018; Table 1). One hybrid in particular, B73 ×
Mo17, was included in the study because B73 is an important

public founder line (Schnable et al., 2009) from which many

present-day commercial lines and hybrids are derived (Mikel

& Dudley, 2006).
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2.2 Field experiments

We planted hybrids in four environments across two years

(2017, 2018) and three locations in central Iowa, (AGR–

Agronomy Farm, BRNE–Bruner Farm, and JHN–Johnson

Farm), but collected data from only three experiments (AGR

2017: 42.0210, −93.7779; BRNE 2018: 42.0117, −93.7364;

JHN 2018: 41.9799, −93.6457) as the JHN 2017 (41.9833,

−93.6420) experiment was severely damaged by wind and

discarded. Within each environment, hybrids were planted in

a randomized complete block design with six replications.

Three replications were used for destructive phenotyping and

three replications for non-destructive phenotyping and end of

season combine harvesting (see Section 2.4). Individual plots

were four rows (spaced 76 cm apart) and 11.35 m long. Plots

were planted at 8.8 plants m−2 with precision planting equip-

ment. The 2017 AGR location was field cultivated on April

18 and planted on May 8, and 150 kg N/ha of 32% UAN-N

fertilizer was applied on April 25. The 2018 BRNE location

was field cultivated on April 18 and planted on May 16, and

168 kg N/ha 32% UAN-N fertilizer was applied on April 27.

The 2018 JHN location was field cultivated on May 17 and

planted on May 18, and 157 kg N/ha 32% UAN-N fertilizer

was applied on May 17. The previous crop was soybean in all

experiments.

2.3 Weather data

In the BRNE locations, daily weather data were retrieved from

Iowa Environmental Mesonet (Iowa Environmental Mesonet,

2019). In the JHN location, temperature and precipitation data

were retrieved from an in-field weather station, and radia-

tion was sourced from NASAPower (https://power.larc.nasa.

gov/). All environments had an average summer maximum

temperature of 29˚C (Figure 1a). Total summer precipita-

tion (June, July, August) ranged from 199 to 574 mm among

environments with a total yearly precipitation from 331 to

715 mm (Figure 1b). In general, 2017 was dry, while 2018

was very wet with extreme rain events and periodic flood-

ing, which inhibited root depth (Archontoulis et al., 2020;

Ebrahimi-Mollabashi et al., 2019).

2.4 Phenotyping measurements

Non-destructive measurements included the following: (1)

emergence date (date when 50% of the plants emerged and

were visible), (2) number of plants at approximately 6th leaf

stage (Abendroth et al., 2011)—plant counts were on average

97% of the target population, (3) number of green collared

leaves and number of senesced leaves (>50% leaf area yel-

low) at each harvest date, (4) dates when 50% of the plants in

the center two rows were shedding pollen and 50% of plants

had visible silks, (5) physiological maturity dates determined

by a fully formed black layer according to Hunter et al. (1991),

and (6) number of plants stalk and root lodged in the center

two rows prior to harvest.

Destructive measurements were taken five times in 2017

and four times in 2018 from each plot. Each time, we har-

vested a 1-m section from one of the two center plot rows.

Harvest dates were designed to capture key growth stages,

namely V8 (8 collared leaves), R1 (silking), R2 (blister), R4

(dough), and R6 (physiological maturity) (Abendroth et al.,

2011). At each harvest, plants were cut at ground level, and

the number of harvested plants was recorded. Any detached,

senesced leaves underneath the harvested plants were col-

lected. Following harvest, harvested plants were partitioned

to (1) green leaf lamina (defined by a leaf having at least 50%

of total area green), (2) senesced leaves, (3) stems, (4) tas-

sels, and (5) ears, which were further partitioned to kernels,

cobs, husks, and shanks. Green leaf samples were scanned

on a per-plant basis using a table-top LICOR leaf area meter

to determine LAI. All plant biomass samples were dried at

60˚C to constant mass, weighed, and converted to grams dry

biomass per m2. Samples of 100 kernels were counted and

weighed. Grain number was calculated using total dry weight

per unit area and 100 kernel dry weight. Grain yield (derived

from hand-harvested grain biomass in g/m2 at 0% moisture)

was converted to kg/ha. Dried samples were ground and

analyzed for carbon (C) and N concentrations using dry com-

bustion elemental analysis (LECO C and N analyzer; LECO

Corporation, St. Joseph, Michigan). Nitrogen concentration

was converted to g N m−2 for each sample type and summed

across samples to compute total N uptake. Final grain yields

were also determined from the center two rows of plots desig-

nated for non-destructive phenotyping using a New Holland

TR88 but were only used to compare to hand-harvested yields.

2.5 The APSIM maize model

APSIM is a widely used cropping system model platform

(Holzworth et al., 2014; Keating et al., 2003) that enables

the simulation of soil-crop-environment interactions. In this

study, we used APSIM version 7.10, specifically the maize

crop model module (Soufizadeh et al., 2018), SWIM for sim-

ulation of soil water (Huth et al., 2012), SOILN for simulation

of soil carbon and N cycling (Probert et al., 1998), and various

management rules to account for tillage, fertilizer application,

and planting conditions.

The maize model simulates phenology, leaf development

and senescence, and biomass accumulation and partition-

ing across nine crop phases. The duration of each phase is
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(a) (b)

F I G U R E 1 Daily average temperature (˚C; panel a) and cumulative rainfall (mm; panel b), at all environments during the growing season from

weather data used for simulations in each environment

primarily dependent on temperature, and to a lesser extent,

moisture stress and photoperiod. Canopy development is

driven mainly by temperature through effects on the phyl-

lochron, with final daily estimates of LAI also dependent on

carbon availability (via specific leaf area) and water stress.

Final leaf number is an emergent property of the model and

is determined in part by the timing of floral initiation. Crop

growth rate and biomass production are calculated as the min-

imum of two daily estimates, one limited by light (radiation

use efficiency, RUE) and one limited by water (TE; tran-

spiration efficiency adjusted for vapor pressure deficit). The

growth of the major organs is a function of their potential

growth and whether carbohydrate and N supply can meet that

demand. Biomass partitioning is stage dependent. From emer-

gence to flowering, leaves have priority over stalk, while from

flowering to physiological maturity, grain is the strongest

sink. Supply of carbohydrates to grain is first fulfilled by

current assimilation, and then supplemented by transloca-

tion from stem and leaves. The APSIM maize model was

recently updated with new physiologically sound plant N rou-

tines and grain growth dynamics (Soufizadeh et al., 2018).

The model uses specific leaf N (SLN) as a key driver in

simulating plant N demand. Grain yield is simulated as the

product of grain number and grain size. Grain number is esti-

mated by a function that relates potential grain number per ear

and daily crop growth rate around the critical period of silk-

ing (Edmeades & Daynard, 1979), which is also affected by

heat stress. There is a strong trade-off in the model structure

between grain number and individual grain weight (poten-

tial grain size = potential grain mass per plant/potential grain

number) (Soufizadeh et al., 2018). The demand for carbohy-

drate in the grain is the product of grain number and potential

grain growth rate, which is based on potential grain size and

duration of grain fill (Soufizadeh et al., 2018). We refer to

Soufizadeh et al. (2018) for more information on the maize

model, and to Holzworth et al. (2014), Keating et al. (2003),

and www.apsim.info/Documentation for APSIM in general.

The soil routines of APSIM have been extensively tested

in this environment (Archontoulis et al., 2020; Archontoulis

et al., 2014; Dietzel et al., 2016; Martinez-Feria et al., 2018;

Puntel et al., 2016).

2.6 Sensitivity analysis

To further understand the sensitivity of the maize model to

different parameter values and to guide and refine our cal-

ibrations, we performed two sensitivity analyses. The first

was performed prior to calibration using the commercial

Pioneer hybrid (P1197; data not shown). The second was per-

formed after calibration using the average parameter values

from all 15 hybrids as a baseline (Table S3). Twenty-six crop

parameters were evaluated in the sensitivity analysis and were

categorized into crop development, crop growth, and grain

components. Sensitivity analyses were conducted one-factor-

at-a-time (Lenhart et al., 2002) by varying a single parameter

within feasible minimum and maximum values (Table S3)

and running a 20-year APSIM simulation for each variation.
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Model outputs included grain yield, above-ground biomass,

crop N uptake, grain number, grain N uptake, grain protein,

grain size, harvest index, maximum LAI, and root depth (aver-

age of 20-year simulations). The model output sensitivity to

each trait was assessed by calculating the relative sensitivity

index (Dmax − Dmin)/Dmax (Hamby, 1994). Dmin and Dmax

are minimum and maximum output values, respectively. Data

analysis was completed in R version 3.6.1 (R Development

Core Team, 2019) using packages tidyverse (Wickham, 2017)

and readxl (Wickham & Bryan, 2019).

2.7 APSIM model calibration

We started simulations on January 1, approximately 5 months

before planting, to allow soil water balance to reach an equi-

librium. This assumption of equilibrium was tested by varying

the initial water as above, below, or at field capacity and

demonstrating through simulation that the soil water reached

equilibrium prior to planting (data not shown). Soil profile

(Table S2) and initial conditions were taken from Archon-

toulis et al. (2020) where past experimental data were used

from the same geographical area. The simulation included

fluctuating shallow water tables and inhibition of root growth

as described in Ebrahimi-Mollabashi et al. (2019), but not

waterlogging functions (Pasley et al., 2020).

Management information was used to simulate growth of

a previously calibrated commercial Pioneer hybrid (P1197)

of 111-day maturity commonly grown in this region (Baum

et al., 2020). This simulation provided a baseline control

which we used to compare model fit improvement for the

15 ex-PVP hybrids. The second step was to calculate initial

parameter values per hybrid using the 2017 experimental data.

For example, thermal time from emergence to floral initiation

(˚C-d) was calculated as (maximum leaf number − 6) × 23.2,

where 6 is the number of leaf initials in the embryo (Birch

et al., 1998) and 23.2 is leaf initiation rate (Carberry et al.,

1989; Soufizadeh et al., 2018). The thermal time from emer-

gence to floral initiation consists of two phases: thermal time

from emergence to end of juvenile (photoperiod insensitive

phase) and end of juvenile to floral initiation (photoperiod

sensitive phase). In this study, we set the end of juvenile

to floral initiation to zero because hybrids are not sensitive

to photoperiod in this region. Thermal time from flowering

to start of grain fill was extrapolated from grain growth time-

series observations. Root depth parameter values were based

on information derived from prior studies in this environ-

ment (Ordonez et al., 2018). Next, we performed iterative

manual calibration for each hybrid by changing model param-

eters in the following order: phenology, biomass production

and leaf area, biomass partitioning, and N-related parame-

ters (Figure 2). Calibration efforts were also first focused on

parameters that are defined in APSIM to be cultivar specific

F I G U R E 2 Calibration flow diagram. After reaching step 4, we

looped around two times to ensure the model was producing sensible

results relating to biomass production (step 2a), leaf area (step 2b),

biomass partitioning (step 3), and tissue nitrogen (step 4)

and subsequently expanded to parameters not categorized as

cultivar specific, but identified as important in the initial sen-

sitivity analyses and known to vary among hybrids, such as

leaf appearance rates (Hebert, 1990; Tollenaar et al., 1984),

RUE (Tollenaar & Aguilera, 1992), target grain N concen-

tration (DeBruin et al., 2017; Yan et al., 2014; Zhang et al.,

2020), and critical specific leaf N (Ordonez et al., 2015). The

model has many feedbacks between processes, and in some

cases, a change in a morphological parameter (e.g., specific

leaf area) had effects on N variables as well. Another exam-

ple of this is in simulated grain number. Grain number is

sensitive to a parameter representing the tradeoff relation-

ship between potential grain number and grain size, which

also influences genetic yield potential (Table 2). The ex-PVP

hybrids used in this study have reduced yield potential com-

pared to many of today’s commercial hybrids and a range

of observed grain numbers and grain sizes that warranted

inclusion of this parameter in the calibration process. The

parameter values were manually adjusted using knowledge of

maize crop growth and development and visual examination

of plots comparing observed and simulated traits across the

growing season (see Figure 5). Our goal in calibration was

for the model to adequately predict all phenotypes, not just

yield. The first set of hybrid calibrations, attained using only

2017 data (one environment) and prior knowledge, will be

referred to in this study as “calibration set one.” We tested

calibration set one in simulating 2018 experimental data to

evaluate overall model performance. In an attempt to better

simulate what was observed in the waterlogged 2018 envi-

ronments, we performed an ad hoc change in APSIM so that

when the simulated water table was less than 30 cm from the

soil surface, we reduced solar radiation by 90% for that period

(usually 1–3 days), in an effort to reproduce the inhibition of

plant growth caused by soil oxygen stress (Pasley et al., 2020).

In the final step, we used all experimental data (three envi-

ronments) and the protocol outlined above to recalibrate the

model. Calibration concluded once a good balance between

observed and simulated values was reached across the grow-

ing season in all three environments for traits including grain
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yield, grain number, grain size, harvest index, total above-

ground biomass, individual organ biomasses, individual organ

nitrogen concentrations and uptakes, leaf number, and leaf

area index; we refer to this as calibration set two. In total, 17

APSIM maize model parameters were calibrated to charac-

terize phenological, morphological, and physiological differ-

ences among the 15 hybrids. Table 2 lists all the parameter

values.

2.8 Statistical indices for model
performance

The goodness of fit was assessed by calculating the root

mean square error (RMSE) and normalized root mean square

error (NRMSE %; normalization was achieved by dividing

the RMSE by the mean of the observed data). These two

indices measure the absolute and relative error, respectively.

Smaller values of RMSE and NRMSE indicate better model

fit. The Index of Agreement (d), a standardized measure of

the degree of model prediction error ranging from 0 to 1

with 1 being perfect model fit, was also computed as 1 −∑𝑁

𝑖 = 1 (𝑂𝑖−𝑆𝑖)2∑𝑁

𝑖 = 1 (|𝑆𝑖−𝑂̄|+ |𝑂𝑖−𝑂̄|)2
(Willmott, 1981). The repeatability,

R2, which is the correlation between repeated measurements

was computed as the fraction of variance explained by the

model, 1 − 𝑆𝑢𝑚((𝑂𝑖 − 𝑆𝑖)2)∕𝑆𝑢𝑚((𝑂𝑖 − 𝑂̄)2) where 𝑆𝑖 is

the predicted value of 𝑂𝑖, and 𝑂̄ is the mean of 𝑂. Data

analysis was completed in R v3.6.1 (R Development Core

Team, 2019) using packages APSIM (Fainges, 2019), dplyr

(Wickham et al., 2019), and hydroGOF (Zambrano-Bigiarini,

2020).

2.9 Quantifying data needs for calibration

To better understand data needs and priorities for efficient

calibration of hybrids in the model, we performed two levels

of reduced calibration: a no calibration control and a partial

calibration, which were compared to a full calibration. The no-

calibration control was simulated using parameter values from

a single commercial hybrid (Pioneer P1197) for all 12 hybrids

grown in 2017. Partially calibrated simulations were obtained

by utilizing only phenological observations while setting the

remaining parameters to values of the commercial hybrid

P1197. Full calibration was equivalent to calibration set two

(Table 2). By comparing model fits for the three approaches,

we quantified the value of phenological, physiological, and

N-related data on model performance.

2.10 Quantifying G × E on plant traits

To quantify G × E, we used calibration set two to perform

long-term (2000–2019) simulations in central Iowa. Histor-

ical weather data were sourced from Iowa Environmental

Mesonet (Iowa Environmental Mesonet, 2019) using the AGR

location (42.0210, −93.7779). Model outputs included end of

season grain yield, grain N concentration, harvest index, max-

imum LAI, and flowering time. Each simulation started on

January 1, 2000 and ended December 25, 2019. Soil water,

soil N, and surface organic matter was reset on January 1

of each simulated year. Simulated data were analyzed by fit-

ting a mixed linear model in R for each trait using package

lme4 (Bates et al., 2015), where environment was fixed, and

hybrid was random. The residual in this analysis was assumed

to be G × E. Finally, we computed the coefficient of varia-

tion (CV = standard deviation/mean) to estimate the range of

variability in the simulated plant traits across the 20 years.

3 RESULTS

3.1 Observed and simulated phenotypic
variance

Across hybrids and environments, observed grain yields at

maturity ranged from 2675 to 13,663 kg/ha, maximum above-

ground biomass from 14,181 to 26,995 kg/ha, maximum LAI

from 3.1 to 5.8 m2/m2, and grain N concentration at maturity

from 0.79% to 2.04% (Figure 3). The model using calibration

set two provided an adequate representation of expected pat-

terns (Figure 3). Simulated grain yields ranged from 8331 to

12,512 kg/ha, maximum above-ground biomass from 17,850

to 25,651 kg/ha, maximum LAI from 4.8 to 6.0 m2/m2 and

maturity-stage grain N concentration from 0.96% to 1.5%

(Figure 3).

3.2 Model calibration and performance

The developed cultivar parameters using 2017 data only cap-

tured the observed variation among hybrids in 2017, with

13 of 16 traits evaluated having an R2
> 0.800 (Table 3).

Grain yield, throughout the growing season, had an R2 value

of 0.989 and NRMSE of 16% (Table 3). Total above-ground

biomass had an average R2 of 0.970 and NRMSE of 13%

(Table 3). Stalk biomass, senesced leaf biomass, grain size,

grain N concentration/uptake, leaf N concentration, and stalk

N concentration/uptake had lower repeatability (R2
< 0.700)

or higher NRMSE (>25%; Table 3).
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F I G U R E 3 Observed (points) and simulated (lines) total above-ground biomass (kg/ha), grain yield (kg/ha), leaf area index (m2/m2), and grain

N concentration (%) phenotypes across 36 hybrid × environment combinations, where colors indicate environment. Simulations were performed

using calibration set two (all data)

Using the 2017 calibration, we simulated the performance

of the nine common hybrids (Table 1) in 2018, a very con-

trasting year in terms of precipitation (Figure 1). Only three

traits (above-ground biomass, maximum leaf number, and

green leaf biomass) had an average NRMSE <25% and an

R2
> 0.700 (Table 3). Simulated end of season grain yield

was on average 3120 kg/ha above observed grain yield.

Hybrid parameter values were recalibrated using data from

all three environments, resulting in calibration set two. The

ad hoc modification for waterlogging improved model perfor-

mance by decreasing NRMSE (%) values for stalk N uptake

(−9.21), leaf N concentration (−5.48), stalk N concentration

(−3.65), grain N uptake (−3.16), grain yield (−2.82), end of

season grain yield (−2.45), senesced leaf biomass (−2.07),

green leaf biomass (−1.85), and LAI (−1.42). The model fit

results of calibration set two can be found in Table 3, Figure 4,

and Figures S2–S36 (individual hybrid × environment). The

most notable improvements to the model after incorporating

all measured data were in the simulation of leaf and stalk N

concentration (R2 increased from 0.001 to 0.924 and 0.906 to

0.966 in 2017, respectively; Table 3). The improvement in leaf

dynamics was primarily a result of recalibrating the relation-

ship between the specific leaf area minimum and LAI for all

15 public hybrids (Table 2 lai_sla_min, Figure S37).

Grain yield, when averaged across all hybrids and all envi-

ronments, had an R2 value of 0.893 (Table 3). The hybrid with

the worst model fit for yield was LH195 × Mo17 (Figure 5,

Figures S18 and S30). This hybrid was grown only in the

2018 environments, which experienced flooding, making it

difficult to calibrate given model limitations. However, yield

prediction of this hybrid in 2018 JHN environment was good

(Figure 5), meaning the lower average model fit for this

hybrid (R2 = 0.66) was due primarily to over-simulation in

the 2018 BRNE environment (Figure 5). In fact, model predic-

tions of yield were reliably worse across hybrids in the 2018

BRNE environment (NRMSE ranging from 31% to 432%)
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(a) (b) (c)
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F I G U R E 4 Observed versus simulated plots of B73 × Mo17 hybrid in the 2017 environment for 12 traits. Red points represent observed data

and corresponding standard errors, while black lines represent simulated values using calibration set two (all data). R2, NRMSE (%) and d (Index of

Agreement) are reported

compared to the 2017 environment (2%–28%) and 2018 JHN

environment (19%−71%), despite higher total rainfall in JHN

(Figure 1). Lodging was also most prevalent in 2018 BRNE

(Figure 6).

The stalk biomass simulated time series followed obser-

vations up to flowering well (Figure 4, Figures S2–S36

panel F). After flowering, the model over-simulated stalk

biomass. However, when we compared stalk biomass to

observed stalk biomass + shank biomass, the overall R2

value increased from 0.764 (Table 3) to 0.882, suggest-

ing a code issue in partitioning rules between stem and

shank.

Additionally, model fit of grain N concentration was rel-

atively low, evident by an R2 value of 0.298 when averaged

across hybrids and environments (Table 3). In 2017 specifi-

cally, observed grain N concentration did not follow a strong

dilution curve (Herrmann & Taube, 2004) in six out of the 12

hybrids (B73 × PHZ51, LH195 × PHM49, LH195 × PHZ51,
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WINN ET AL. 523Crop Science

F I G U R E 5 Observed versus simulated biomass and yield (kg/ha) for 16 hybrid × environment combinations. Black lines represent simulated

values using calibration set two (all data). Red points represent observed data and corresponding standard errors

F I G U R E 6 Agricultural Production Systems sIMulator (APSIM) simulated yield (calibration set two—all data), hand-harvested yield,

combine yield, and number of plants root/stalk lodged in center plot rows for all hybrid × environments. All yields are expressed in kg/ha dry weight.

Lodging counts, hand-harvested yields, and combine yields are averaged across replications

PHW52 × LH185, PHW52 × PHZ51, and LH195 × LH185).

In other words, at physiological maturity, grain N concentra-

tion did not decrease significantly from what it was at the

beginning of grain filling, as would be expected. The model

did not simulate this pattern (Figures S3–S8 panel J).

3.3 Variability of model parameters among
hybrids

The variability of the calibrated model parameters among

hybrids (coefficient of variation) ranged from 0% to 26.8%
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(a)

(c)

(b)

F I G U R E 7 Normalized root mean square errors (NRMSE; %) for simulated and observed 2017 data where simulations were run using no

calibration, partial calibration, and full calibration. (a) NRMSE values when averaged across 12 traits and 12 hybrids, (b) average NRMSE with traits

grouped into four categories, (c) average NRMSE for 12 traits

(Table 2, Figure S1). Phenology parameters, such as thermal

time from emergence to end of the juvenile stage (gdd; grow-

ing degree days), thermal time from flowering to maturity

(gdd), and thermal time from flowering to start of grain fill

(gdd) had a coefficient of variation of 6.5%, 8.8%, and 26.8%,

respectively (Figure S1). The variation in those parameters is

also likely inflated due to three of the hybrids grown in 2017

(LH145 × LH162, PHZ51 × LH145, and PHJ40 × LH82)

being of an earlier maturity and different phenology to the

other hybrids.

3.4 Evaluation of data needed for efficient
calibration

Compared to no calibration (all parameters from a single

commercial hybrid, Pioneer P1197), the partial calibration

(phenological parameters only) decreased the NRMSE from

35% to 30%, while the full calibration (all data) decreased

the NRMSE to 20% (Figure 7). The calibration process

did not have the same impact on all traits. Some traits

improved more than others with calibration (Figure 7). We

found that N-related traits benefitted the most from full cal-

ibration, followed by biomass and then yield-related traits

(Figure 7b). LAI was improved by partial calibration of the

crop development parameters but not by full calibration,

demonstrating that morphology is driven mostly by environ-

ment and phenological parameters and less so by growth

parameters (Figure 7b). Individual hybrids responded dif-

ferently to calibration as well. Taking yield as an example,

most hybrids improved with calibration, but a few did not

(Figure 7c). Calibration efforts were conducted at a systems-

level involving many traits within several environments, so

yield predictions were sacrificed at times.

3.5 Exploring sensitivity of crop
parameters

Sensitivity analysis indicated that 49% of the variability in

grain yield was due to crop development parameters, 29% due

to crop growth parameters, and 22% due to grain component
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F I G U R E 8 Sensitivity of 26 Agricultural Production Systems sIMulator (APSIM) crop cultivar parameters on yield (kg/ha) in terms of relative

sensitivity index. Parameters are characterized by crop development, crop growth, and grain component parameters. Parameters that were used in

calibration are highlighted in blue text on the y axis. Abbreviation: GDD, growing degree days

parameters (Figure 8). Grain yield variability was most sensi-

tive to cardinal temperatures (minimum, optimum and ceiling

temperatures for plant development), with a sensitivity index

of 0.78 (Figure 8). RUE was another highly sensitive param-

eter, with an index of 0.43 (Figure 8). A parameter relating

grain number and grain size (grain number max coefficient,

Table 2) ranked fourth in sensitivity (sensitivity index = 0.4,

Figure 8). Calibration of this parameter improved prediction

accuracies of yield, and more specifically, grain size, num-

ber, and N concentration (Figure S38). Three of the crop

development parameters used in this calibration study were

thermal time from emergence to end of juvenile stage, flow-

ering to maturity, and flowering to grain fill. Yield variation

is sensitive to these parameters (ranking 6th, 10th, and 17th,

respectively), which vary genetically even among the sim-

ilar maturity range hybrids in this study (Figure 8, Figure

S1), reinforcing the need for obtaining phenology estimates

in plant breeding data collection.

Other traits such as biomass, crop N uptake, grain num-

ber, grain size, grain protein, grain N uptake, harvest index,

maximum LAI, and root depth had varying sensitivities to

input parameter values (Figures S39–S47). About 54% of the

maximum LAI variability was attributed to crop develop-

ment parameters, with maximum LAI being most sensitive

to the thermal time between emergence and end of juvenile

stage. Harvest index was most sensitive to crop development

parameters (61%), followed by grain component parameters

(24%) and crop growth parameters (15%). Of the 10 output

traits evaluated in the sensitivity analyses, crop development

parameters were, on average, attributed to most of the trait

sensitivity, ranging from 26% to 61% (Figure 8, Figures

S39–S44).

3.6 Quantifying G×E

Simulation analysis for 20 weather years showed strong

crossover G × E among the 15 hybrids (Figure 9a). G × E

accounted for 19% of the total genotypic variance for end

of season grain yield, 4% for maximum LAI, 17% for grain

N concentration, 27% for harvest index, and 2% for flower-

ing time. B73 × Mo17 had the highest average simulated end

of season grain yield (11,661 kg/ha) across the 20 environ-

ments but ranked eighth in variation among the 15 hybrids,

with a coefficient of variation of 6.1% (Table S4). This vari-

ation indicates that while B73 × Mo17 may perform better

than other hybrids on average, it may not always perform

the highest, suggesting a potential weakness under certain

environmental conditions. Across hybrids, the coefficient of

variation ranged from 3.5% to 10.1% for end of season grain

yield, 10.7% to 15.3% for grain N concentration, 4.1% to 8.5%

for harvest index, 1.9% to 3.9% for maximum LAI, and 5.6%

to 6.1% for flowering days after planting.

4 DISCUSSION

4.1 Modeling physiological variability

Our results demonstrate that calibrated CGMs can capture

a portion of the observed variability among hybrids, but
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(a)

(b)

(e) (f)

(c) (d)

F I G U R E 9 Simulations of end of season grain yield (a and b), grain N concentration (c), harvest index (d), maximum LAI (e), flowering time

(f) for all hybrids using calibration set two and historical weather data from 2000 – 2019 in Ames, IA, environment

not all the variability (Figure 3). While more physiological,

detailed plant processes have been incorporated within CGMs

(Hammer et al., 2010), it is a common notion that more is

needed (Wang et al., 2019), especially with regard to lodging

and excessive moisture stress conditions in which we found

the largest model inaccuracies in this study (Figure 6). The

relatively small observed phenotypic variability among the

hybrids in this study (Figure 3) reflects the limited genetic

diversity among breeding population material and hybrids

grown in the U.S. Corn Belt today. Many commercial hybrids

are derived from the same public inbred parents, such as the

ex-PVP inbreds used in this study (Coffman et al., 2020; Dar-

rah & Zuber, 1986; Mikel & Dudley, 2006). Therefore, CGMs

need to simulate subtle physiological differences among cul-

tivars to capture performance variation among commercial

maize hybrids. A balance of parsimony is necessary, though,

if CGMs are to play an integral part in plant breeding

(Hammer et al., 2019; Messina et al., 2018) and linked directly

to genes or quantitative trait locis (QTLs; Hammer et al.,

2016; Yin et al., 2016). Until an understanding of what
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underlying physiological traits differ across genotypes for

hybrid performance or G × E is reached, the amount of

variation that can be predicted cannot truly be determined.

In this study, full calibration resulted in R2 values greater

than 0.75 for 11 out of 18 traits evaluated across all hybrids

and environments (Table 3). However, the overall R2 and

NRMSE (%) results suggest that we could not capture the N

content patterns well in this study (Table 3). It is important

to note, though, that the model fit results related to N may be

biased from having few data at early stages of development

for leaf, stalk, and grain N content (Figure 4) and because

the values and variation in N content are small. Furthermore,

error values for ratios (organ N uptake) are perpetually greater

than that of their constituent parts (organ biomass and N con-

centration; Table 3). Although R2 is a statistic widely used

for model evaluation, it is sensitive to outliers and insensi-

tive to additive and proportional differences among observed

and predicted data (Archontoulis et al., 2014; Legates &

McCabe, 1999). Therefore, we include the Index of Agree-

ment (d) statistic which can detect additive and proportional

differences (Table 3) (Legates & McCabe, 1999; Willmott,

1981).

4.2 Data requirement learnings for hybrid
calibration

As demonstrated in this study, phenology is important for sim-

ulating hybrid performance (reduced average NRMSE from

35% to 30%, Figure 7), while crop growth and grain com-

ponent parameters account for a portion of the physiological

variability among hybrids (further reduced average NRMSE

to 20%, Figure 7). These results support the development of

generic cultivars based primarily on phenological observa-

tions as done in the past (Boote et al., 2003) but demonstrate

the benefit of additional trait data collection and calibration.

Sensitivity analyses revealed important parameters for trait

variability and future consideration for data collection in plant

breeding programs and phenotyping experiments (Figure 8).

The sensitivity analyses in this study were conducted using

simulations of a single environment, which may limit the

repeatability of results across environments. Additional work

is planned to address the environmental sensitivity of the

model parameters. Sensitivity analyses can reveal strengths

and weaknesses in both the calibration protocol, that is, the

data, and in the CGM. Phenotypic sensitivity to particular

parameters may reveal that those parameters are critical for

accurate simulations or that the structure of the model does

not accurately represent the effect of the parameter.

Calibration studies and sensitivity analyses provide a bet-

ter understanding of the phenotypic data requirements for

model calibrations, insight into target CGM parameters for

calibration in an optimization schema (Wallach et al., 2021),

and identification of important physiological traits underlying

hybrid performance that could be the focus of direct pheno-

typing experiments performed on a large number of entries

(Cooper, Messina, et al., 2014). For instance, the high yield

sensitivity of the RUE parameter (Figure 8) suggests that

accurate phenotyping of this trait would significantly improve

simulation, and there is evidence RUE has increased through

maize breeding efforts (Curin et al., 2020; Tollenaar & Aguil-

era, 1992). Our results also demonstrate the importance of

crop development in the simulation of plant traits, suggesting

that phenology data collection and proper calibration of phe-

nology parameters can account for nearly 49% of the yield

variability (Figure 8). Phenology data, even at the scale of

large plant breeding trials, is not difficult to obtain. Specif-

ically, thermal time from emergence to end of juvenile stage,

thermal time from flowering to maturity, and leaf initiation

and appearance rates were demonstrated to have high yield

and above-ground biomass sensitivity (Figure 8, Figure S55).

Measuring end of season grain N concentration could be ben-

eficial to model calibration as well, as our results suggest grain

N concentration parameters may be hybrid specific given the

observed dilution curves (Figures S3–S8 panel J), rather than

crop specific as defined in the APSIM model. Grain N con-

centration is known to vary among hybrids (DeBruin et al.,

2017; Yan et al., 2014; Zhang et al., 2020) and is a trait easily

obtained even at the scale of plant breeding programs, espe-

cially once combine harvesters are improved to provide both

grain yield and protein (Long & McCallum, 2020). Our results

thereby suggest that more work is needed in the area of N

content through a combined approach of data collection and

model improvement.

The time and labor associated with obtaining phenotypic

data needed for full empirical calibration is a significant

hurdle. However, as advancements in high-throughput phe-

nomics are made, we anticipate the ability to estimate

additional model parameters more efficiently using imaging

and other high-throughput phenomic technologies (Kusmec

et al., 2021). Phenomics and CGMs will continue to undergo

joint development as phenotypic data are used to improve the

models and CGMs guide phenotyping efforts through physi-

ological understanding and identification of knowledge gaps

(Hammer et al., 2002). Advances in phenomics in concert

with methods for imputation of CGM parameters will enable

further advancement in calibration protocols (Messina et al.,

2018).

4.3 Model structure
limitations—Waterlogging

Model structure limitations relating to waterlogging were

encountered in this study in the 2018 environments (Figures 1

and 6). Waterlogging, characterized by the soil water being
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near saturation, has been shown to decrease dry matter

accumulation, leaf photosynthesis, LAI, plant height, stalk

strength, and root growth, while increasing leaf senescence

(Araki et al., 2012; Hayashi et al., 2013; Kanwar et al., 1988;

Ren et al., 2016b, 2016c; Ren et al., 2014; Tian et al., 2020).

These responses can cause lodging, root rot, fungal disease

infections, and overall grain yield reductions (Kettlewell et al.,

1999). While waterlogging functions have been tested within

the APSIM soybean model version 7.9 (Pasley et al., 2020),

APSIM maize version 7.10 currently accounts for only root

depth inhibition due to excess moisture (Ebrahimi-Mollabashi

et al., 2019). Thus, we performed an ad hoc modification to

partially account for excess water moisture in this study (see

Section 2). Although the model modification helped, it did not

solve the yield over-prediction issue in year 2018 where water-

logging was prevalent in early vegetative stages when maize

is most susceptible (Mukhtar et al., 1990; Ren et al., 2016a;

Zaidi et al., 2004) and late-season stalk and root lodging were

noted (Figure 6). More work is needed to expand modeling

capacity in wet soils. The need for such model enhancement

is further justified by historic crop insurance payments in the

U.S. Corn Belt, which reveal 30% of crop damage due to

excess water (Perry et al., 2020). Globally, 10%–12% of agri-

cultural land is estimated to be affected by waterlogging (Kaur

et al., 2019). These numbers are predicted to increase because

of frequent, severe, and unpredictable weather events asso-

ciated with climate change (Hirabayashi et al., 2013; IPCC,

2014), which reinforces the need to improve model structure

to deal with excess water stress.

4.4 Simulating G×E across 20 years

A calibrated CGM that simulates yield among hybrids, pro-

viding continuous data rather than a few single time point

measurements (Figure 3), holds immense potential for plant

breeders to understand cultivar differences and G × E. We

demonstrated that a CGM calibrated using empirical data sim-

ulates the kind of G × E expected and observed by breeders,

a result that helps validate the CGM structure (Figure 9). The

hybrid B73 × Mo17 performed better in terms of grain yield

than the other hybrids averaged across 20 years but was more

sensitive to environmental variation than the other hybrids.

G × E accounted for 2%–29% of the total genotypic vari-

ance across the five traits evaluated, and for yield, G × E

accounted for 19%. These numbers are consistent with G ×
E proportions of variance observed in multi-environment tri-

als of commercial hybrids grown in Iowa (So & Edwards,

2009), synthetic maize population crosses in Iowa (Edwards,

2016), and hybrids grown in G2F network (Gage et al., 2017).

If CGM calibrations are validated with multi-environment

trial data, the ability to simulate differences in environmental

stability would be a transformational tool in plant breeding.

It would enable breeders to use calibrations developed in a

very limited set of environments, including within a single

year, and potentially extrapolate to many environments and

years to identify stable hybrids. This level of environmental

extrapolation is currently not possible with linear statisti-

cal prediction models. Multi-environment validation of these

CGM calibrations is currently underway.

4.5 Potential limitations and future
considerations

Within the modeling community, consensus on the optimal

approach to model calibration has not been obtained because

no single method is best in every context (Seidel et al., 2018;

Wallach et al., 2021). Even for the same model structure and

data set, different modeling groups may identify different sets

of parameters to estimate, different parameter values, and dif-

ferent criteria for defining the best model parameters (Wallach

et al., 2021). We used manual calibration, expert knowledge

and sensitivity analyses to calibrate models with a combi-

nation of visual and frequentist best-fitmetrics to determine

final parameter values. We recognize both the merits and

limitations to our approach. We used a stepwise approach, cal-

ibrating parameters in order of importance, starting first with

phenology, then biomass production, biomass partitioning,

then tissue N, and repeated the process to ensure the model

produced sensible results (Figure 2). Our approach was simi-

lar to that of an optimizer in that it was iterative in nature as

parameter values were adjusted based on model predictions

for multiple traits. Whereas a manual process does not satisfy

formal optimality criteria, it does avoid some potential pitfalls

in automated approaches (Wallach et al., 2021). Limitations

of automated approaches can include lack of directly-linked

optimizer software for certain modeling engines like APSIM

classic, convergence to local rather than global optima, and

choice of initial model conditions impacting reproducibility.

Even with automated methods, calibration requires knowl-

edge of the model structure and requires sensible assumptions

for initial conditions, and hence, some level of manual input

is still required. Equifinality is a common problem with the

calibration of many parameters and occurs when different

combinations of parameter values give the same results; there-

fore, the calibration does not offer unique parameter values

(He et al., 2017; Wallach et al., 2021). While the calibrations

in this study were based on a limited number of environ-

ments, there was contrast among the environments in relation

to water stress in particular, which could reduce some equi-

finality impact and boost robustness (He et al., 2017). Future

research will have the potential to improve these calibrations

based on future model improvements, improvements to cali-

bration procedures, and additional data on the same hybrids

(some of which is currently being collected in our lab), and
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thus these calibrations are good starting points for a set of

publicly available U.S. Corn Belt hybrids.

CGM calibration and simulation studies can help to iden-

tify important underlying traits and provide physiological

insight for future applications within breeding. Applications

of CGMs within breeding may be more plausible at certain

stages within the breeding pipeline where fewer candidates

need to be evaluated. In late stages of breeding programs,

CGMs could be utilized to characterize important parent or

tester lines, for product placement, or to identify important

traits within managed stress nurseries (Cooper, Messina, et al.,

2014).

5 CONCLUSIONS

The sensitivity analyses and observations in this study elu-

cidate the importance of phenology underlying differences

among hybrids and the need for this information to be mea-

sured in breeding experiments. Particularly phenology traits

such as leaf initiation and appearance rates, the thermal time

from emergence to end of juvenile stage, and the thermal

time from flowering to maturity were shown to be important.

Yield and above-ground biomass are also largely sensitive

to RUE, which suggests that the overall simulation accuracy

could be improved if RUE measurements were collected. By

calibrating 15 public hybrids within the APSIM model and

providing information on data needs for efficient calibration

and importance of traits, this study creates future opportuni-

ties for increased model use in breeding programs. We also

recognize, however, that CGMs are likely to be incorporated

in breeding programs by imputing genetic parameters through

optimization schema due to the reduced need for extensive

phenotypic data (Cooper, Messina, et al., 2014; Messina et al.,

2018). The development of parameter values particularly for

public hybrids, as done in this study where genetic marker and

pedigree data are available, provides opportunities for future

research to link plant traits to genes. These calibrations pro-

vide a range of possible values for these historical hybrids

which can be used in future exploration studies by APSIM

users. Specifically, given that these hybrids have been grown

in many environments throughout the United States as part of

the G2F Initiative (McFarland et al., 2020), it creates oppor-

tunities to further test model simulations across a range of

environments, use the model to assist empirical research by

proving insights on water-nitrogen limitations per environ-

ment, simulate G × E in the long term (as we demonstrated in

this study), or even explore the role of management on hybrid

performance to better understand agronomic yield gaps.
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