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Abstract: Throughout history, the pursuit of diagnosing and predicting crop yields has evidenced
genetics, environment, and management practices intertwined in achieving food security. However,
the sensitivity of crop phenotypes and genetic responses to climate still hampers the identification
of the underlying abilities of plants to adapt to climate change. We hypothesize that the PiAnosi
and WagNer (PAWN) global sensitivity analysis (GSA) coupled with a genetic by environment
(GxE) model built of environmental covariance and genetic markers structures, can evidence the
contributions of climate on the predictability of maize yields in the U.S. and Ontario, Canada. The
GSA-GxE framework estimates the relative contribution of climate variables to improving maize
yield predictions. Using an enhanced version of the Genomes to Fields initiative database, the
GSA-GxE framework shows that the spatially aggregated sensitivity of maize yield predictability is
attributed to solar radiation, followed by temperature, rainfall, and relative humidity. In one-third of
the individually assessed locations, rainfall was the primary responsible for maize yield predictability.
Also, a consistent pattern of top sensitivities (Relative Humidity, Solar Radiation, and Temperature)
as the main or the second most relevant drivers of maize yield predictability shed some light on the
drivers of genetic improvement in response to climate change.

Keywords: sensitivity analysis; maize yield predictability; genetic-by-environment interactions (GxE)

1. Introduction

Maize (Zea mays L.) adaptability is a spatiotemporal expression of the organism’s
genetic and phenotypic responses to its environment. The study of maize blends scientific
and technological advancements with cultural identities, agronomic practices, and variable
climate conditions, making it one of the world’s top cereals, a critical resource to meet our
future food security, and a pillar of civilizations [1–5]. Efforts to understand crop responses
to volatile climate are recorded by plant’s organic and production variables [6–8]. Predict-
ing those responses requires integrating inherently uncertain genetic, climate, phenotypic,
and management data to elucidate the underpinning processes responsible for the plants’
abilities to adapt. While such uncertainties challenge the diagnosis and prediction of crops’
yields in a changing climate using statistical and data-driven models, they can also be
used to identify the areas of model improvement and the explicit or implicit integration of
OMICS (genomics and phenomics) and climate data [9–22].

The sensitivity of observations, numerical, and empirical estimations of crop produc-
tion to climate variations have fostered human ingenuity to adapt crops to a changing
environment. Environmental factors such as temperature and precipitation [23–26], temper-
ature thresholds [27], increasing global temperature [6], and climate variability and change
projections [28–32] affect the responses of crops to a changing climate and how we quantify
them. Inherent uncertainties in climate variables also represent a challenge to identify
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the genomic and phenotypic responses to a changing environment, propagating errors
and affecting the projections of more physiologically efficient crop varieties, the expansion
of agriculture, and the same sustainability of crop productivity [28,33–41]. Furthermore,
climate variability and change continuously trigger crop performance losses, compromising
food security across multiple geographic and productive scales [31,42], and challenging
breeding efforts [5,13,40,41,43–47].

Uncertainty in model inputs can lead to estimating the relative importance of model pa-
rameters or input variations by analyzing the propagation of input errors to outputs [48–55]
or implementing global sensitivity analyses [56–61]. Local and global sensitivity analyses
have been coupled to multiple models, for example, local sensitivity analyses have been
used to determine that the outputs vary according to changes in the inputs around a specific
point of the feasible input domain. In contrast, global sensitivity analyses (GSA) cover
an entire viable input space to recognize the output sensitivity level. In this study, we
developed a conceptual modeling framework to estimate the global sensitivity of maize
phenotype predictability to variations in climate variables.

Crop phenomics modeling studies analyze the sensitivity of crop traits to environ-
mental and management factors using biophysical models. The authors [62] analyzed the
sensitivity of CERES-Maize yield predictions to solar radiation and soil properties, showing
a higher sensitivity of the model to solar radiation, and to a lesser extent to soil properties.
The authors [63] applied the q-factorial design GSA method to the CSM-CROPGRO-Cotton
model to rank 16 input parameters to assess the variability in cotton yields. Their results
indicated that the specific leaf area of the cultivar under standard growth conditions is
the most effective model parameter. However, the continuous responses of organisms to a
changing environment require the implementation of sensitivity analyses that can reduce
the errors in simulated phenotypes at high-frequency time steps [64], high parameter di-
mensionality [65], and multi-scale environmental changes [66]. While these studies use
biophysical models to unveil the complexity of crop model sensitivity levels to various
hydroclimatic factors, it remains unclear how climate and climate-genetic interactions affect
crop phenotypes. A pertinent question for the present research endeavor is: What are the
climate variables that drive improvements in the predictability of maize yields across one
of the most productive agricultural systems in the world?

To answer this question, this study rests on three premises: (1) previous studies found
a high sensitivity of maize yield simulations in the U.S. to climatic drivers such as temper-
ature, solar radiation, precipitation, and relative humidity [67–71]; (2) the enhancement
of OMICS (i.e., genomics and phenomics) and climate data indicate that the associated
interactions between climate variables and the genetic markers lead to improvements
in maize yield predictions [17,19]; and (3) climate variation and changes are integrated
into multiple environmental covariance matrices with genetic marker data to predict phe-
notypes [72]. Since the sensitivity of maize yields to climate variability and change is
an inherent element of breeding practices and an opportunity to couple a GSA model,
we hypothesize that a GSA [73] coupled with integrated environmental covariance and
genetic markers structures—and built in a genetic by GxE model [9]—can identify the
contribution of climate uncertainties on the predictability of maize yields in the Genomes
to Fields (G2F) area of study. The latter is a statistical modeling approach that uses the
environmental covariance matrices to simulate the direct and interactive effects between
genetics and the environment on crop yields. The covariance structure synthesizes the
environmental co-variability among tested environments in the GxE model. A novelty of
this work relies on using PiAnosi and WagNer (PAWN) [74] as an efficient, easy-to-interpret,
and density-based technique for identifying and prioritizing environmental factors. The
PAWN technique contrasts unconditional and conditional phases to quantify the sensitivity
of model outputs, indicative of model performance to the uncertainty in input climate
variables. The coupled GSA-GxE framework facilitates quantifying the sensitivity level
of crop phenotypes’ predictability to various environmental variabilities. In this study,
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we used solar radiation, temperature, rainfall, and relative humidity to test the proposed
GSA-GxE framework.

The GSA-GxE coupling modeling system uses the environmental covariance matrices
to integrate climate variables and estimate the sensitivity of maize yield predictions to un-
certainties in solar radiation, temperature, rainfall, and relative humidity across the US and
the province of Ontario in Canada (US-CA). We use the improved G2F database [17–19,74],
conformed by maize OMICs (i.e., genetic and phenotypic) and environmental datasets.
This database is used to test the GSA-GxE framework, summarized in Section 2.1. In
Section 2.2, the GxE model’s equations and the environmental covariance matrix structure
to incorporate genetic and environmental interactive effects on maize yield predictability
are described, respectively. Afterward, the PAWN’s technique as a GSA method and the
conceptualization of the GSA-GxE framework for quantifying the GxE model predictive
skill sensitivity to environmental drivers is provided in Sections 2.3 and 2.4. Next, Section 3
reviews and discusses the results and findings of the study. Finally, the concluding remarks
on GxE performance sensitivity to environmental factors are summarized in Section 4.

2. Materials and Methods
2.1. Database and Data Availability
2.1.1. Multi-Dimensional Genomes to Field (G2F) Database

This study used an enhanced version of the G2F initiative database [17–19,74] to test
the proposed GSA-GxE coupling system. The G2F database comes from a public-private
collaboration in North America to provide multi-dimensional data consisting of maize
OMICs datasets and major environmental drivers in phenotypes [75]. The G2F initiative,
initiated in 2014, implemented several maize test plots in the U.S. and the province of
Ontario in Canada (see Figure 1a) to track, record, integrate, and provide large-scale,
multi-year, and multi-environment information for researchers and the public. The G2F
initiative releases annually three data categories, including maize genetic markers (G2F-
G), phenotypic measurements (G2F-P), and environmental information (G2F-E) averaged
across 25 experimental fields through its official website [75]. Figure 1 lists the observed
and recorded variables in each mentioned category. Here we processed an improved
version of the G2F data with 84 experimental fields between 2014 and 2017. This database
is the foundation of the built and tested environmental covariance matrix used by the
GSA-GxE framework.

Figure 1. Cont.
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Figure 1. The spatial distribution of Genome to Field (G2F) experiments across the U.S. and Canada
in (a). The collected genetic (G2F-G) dataset in (b), environmental (G2F-E) time series in (c), and
phenotypic (G2F-P) observations in (d) in each of the G2F experimental maize plots are listed. The
bold variables are used to test GSA-GxE framework.

2.1.2. G2F-E Pre-Processing

Before testing the GSA-GxE framework, the G2F database requires pre-processing to
be ready for further analysis. A pre-processing methodology has been applied to assign
each experiment to a unique ID based on the combinations of year × location. As can be
seen in [17], the first four digits in each ID represent the conducted year of the experiment.
The following two characters show the state of the field location, and the last two characters
refer to the assigned number for the hybrid experiments. For example, “2015NEH1”
represents a maize hybrid experiment called H1 located in the state of NE and conducted
in 2015. Since this study focuses on yielding predictive skill sensitivity to hydroclimatic
drivers, the G2F-E datasets are briefly explained below. More information on G2F-G and
G2F-P is provided in [17,72].

At each G2F experimental plot, eight hydroclimatic variables, including temperature
(T) [◦C], dew point (DP) [◦C], relative humidity (RH) [%], solar radiation (SR) [W2/m],
rainfall (R) [mm], wind speed (WS) [m/s], wind direction (WD) [degrees], and wind gust
(G) [m/s] have been measured and recorded in 30-min time intervals by a weather station
located in the field during the maize growing season. For this study, the sensitivity analysis
consists of four hydroclimatic variables including T, RH, SR, and R. For more details about
the collecting techniques, see the G2F website [75]. All environmental time series released
by G2F have been downloaded, analyzed, and controlled for completeness and consistency
for this study. The deep learning data-driven model has imputed the gaps and missing
samples explained in [17]. In many cases, more than one experiment has been conducted
in the exact location. This scenario indicates that the recorded G2F-E time series is the same
for such experiments at the same sites.

2.2. Modeling the GxE Interactions

Crop phenotypes are an expression of the crop’s genetics, environmental conditions,
and their interactions [9,76,77]. Understanding such factors contributes to developing
diagnostic and prognostic models, guiding more informed agronomic recommendations
according to complex patterns of climate variability and change.

The GxE-based models use environmental covariance matrices paired with genetic
markers to predict maize yields [9]. The methodology below introduces the analysis of
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global sensitivity of phenotype predictions for a regional experiment defining the GxE
model as:

Yijk = µ + wij + gj +gwij + εijk (1)

where, Yijk is maize phenotypic response variable (i.e., grain yield) of plant kth of genotype
line j tested in environment i defined as the combinations of the year × location, µ is the
overall mean from all observations, wij is the representation of the main environmental
condition effect i faced by maize line j in each environment i, gj is the representation of the
main genetic effect of maize line j, gwij is the interaction term between maize line j and
environmental conditions in environment i, and εijk is the error term.

The authors [9] proposed an extension of Genomic-Best Linear Unbiased Predictors
(GBLUP) to incorporate genetic and environmental gradients. In this approach, the genetic
and environmental gradients are defined as linear phenotypic regressions with molecu-
lar Marker’s Covariates (MCs) and with Environmental Covariates (ECs), respectively,
as follows:

gj =

P

∑
m=1

xjmbm (2)

wij =

Q

∑
q=1

Wijqγq (3)

where, gj is an approximation of the genetic value of the jth line, xjm is the genotype of the
jth line at the mth MC, bm is the effect of mth MC, P is the total number of MCs, wij is the
environmental conditions faced by each line in each environment, Wijq is the value of qth
EC in the ijth environment × maize line combination, γq is the main effet of qth EC, and Q
is the total number of ECs.

We assume both markers and environments effect (bm and γq) are identically normally
distributed as follows:

bm ∼ N
(

0, σ2
b

)
(4)

γq ∼ N
(

0, σ2
γ

)
(5)

where, N is noted as the normal distribution.
The genetic and environmental main effects in Equation (1) follow a multivariate

normal distribution as below:

g ∼ N
(

0, Gσ2
g

)
where G =

1
P

XX′ (6)

w ∼ N
(

0, Ωσ2
w

)
where Ω =

1
Q

WW′ (7)

where, G is the genomic relationship matrix which is the covariance structure describing
the similarities between each pair of maize lines and computed based on MCs, and X is
the centered and standardized genotype matrix. The covariance structure Ω describes
the similarities between environmental conditions of each pair of environments and is
computed based on ECs, and W is the centered and standardized environmental matrix.

Based on the above, the interaction in the covariance structure is defined in Equation (8)
as the Schur product of G and Ω:

gw =
{

gwij
}

gw ∼ N
(

0, G#Ωσ2
GW

)
(8)
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Similar to other components in the modeling phenotypes described above, the error
term also is normally distributed with null mean and variance σ2

ϵ as below:

εijk ∼ N
(

0,σ2
ϵ

)
(9)

The covariance matrices are the metrics of similarity for the genetic and the envi-
ronment between each pair of genomes in the genetic covariance matrix G and each pair
of environments in the environmental covariance matrix Ω, respectively. To analyze the
sensitivity of GxE performance to environmental drivers, the environmental covariance
matrix represents the link between the GxE model and the GSA’s PAWN technique. The
structure of the environmental covariance matrix is presented below in more detail.

Environmental Covariates (ECs) and Environmental Covariance Matrix Structure

The authors [9] state that there is not a linear relationship between the effects of ECs
and the crop traits. As a result, ECs cannot flawlessly deliver the hydroclimate time se-
ries impacts on the yield values. Thus, they proposed incorporating the environmental
covariance function and its interactive effect with the genetic covariance function as envi-
ronmental similarity criteria to borrow information between environments. Authors [26]
also showed the combined effect of changing climatic variables, represented by the interac-
tion among T, R, and SR, influencing maize yields. These authors suggest that in analyzing
the sensitivity of crops’ yields to the variability of a single climate variable, the co-variability
among the main climatic drivers should be expanded for crop growth diagnostics. That is
why we have taken advantage of the environmental covariance matrix (Ω) calculated from
the hydroclimatic time series (ECs) to measure the environmental co-variability between
G2F experiments in Equation (1). Consequently, this model incorporates a compound
environmental similarity, rather than one single hydroclimate variable to simulate the
crop phenotypes.

The environmental variance-covariance matrix (Ω) is a square matrix that provides
the variances of a given random vector, in which diagonal elements are the ECs time series
for each G2F location. The covariances between each pair of independent random vectors
(i.e., ECs) are the upper/lower off-diagonal elements of the matrix. The covariance values
measure the joint variability between each pair of ECs time series. A higher covariance is
a measure of the strength of the environmental relationships between G2F experiments.
The environmental covariance matrix integrates multi-dimensional data from ECs of all the
G2F locations in a single structure containing all the climate conditions from the entire set
of experiments during the studied years.

In this study, we designed ECsm×q matrix to calculate the Ω. The ECsm×q contains
15 environmental time series from M G2F experiments including daily minimum tem-
perature (Tmin), mean temperature (Tmean), maximum temperature (Tmax), minimum dew
point (DPmin), mean dew point (DPmean), maximum dew pint (DPmax), minimum relative
humidity (RHmin), mean relative humidity (RHmean), maximum relative humidity (RHmax),
minimum solar radiation (SRmin = 0), mean solar radiation (SRmean), maximum solar ra-
diation (SRmax), accumulative rainfall (Racc), mean wind speed (WSmean), and mean wind
direction (WDmean), respectively. All environmental data are extracted from the enhanced
G2F database [18]. The q is the length of the growing season in days multiplied by the
number of considered climatic variables. The general ECs and Ω matrix structures are
shown below:

ECs =

EC11 · · · EC1q
...

. . .
...

ECm1 · · · ECmq

 m = 1, . . . , M (10)
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Ω =


VarEC1 Cov (EC1, EC2) . . . Cov (EC1, ECm)

Cov (EC2, EC1) VarEC2 . . . Cov (EC2, ECm)
...

...
. . .

...
Cov (ECm, EC1) Cov (ECm, EC2) . . . VarECm

 (11)

where, ECmq is the daily environmental time series observation, q is the total number of
environmental covariables, VarECm is the variance of environmental time series in G2F
experiment m, and Cov (EC1, EC2) = Cov (EC2, EC1) is the covariance of the climate time
series between the G2F experiments 1 and 2.

The elements in the ECs are standardized to calculate the variance-covariance matrix
Ω, which contains the variance of each G2F environmental time series and the covariance be-
tween each pair of G2F climate time series calculated according to the following equations:

var (ECm) =

√
1
n∑N

i=1

(
ECi − EC

)2 (12)

cov (EC1, EC2) =
∑
(
EC1 − EC1

)(
EC2 − EC2

)
q

(13)

where, var (ECm) is the variance of the ECs time series in G2F experiment m, cov (EC1, EC2)
is the covariance of ECs time series in G2F experiment 1 and 2, ECi is the standardized
value of ECs at day i, and EC is the average of standardized ECs in the whole time series.

We processed 84 G2F experimental locations across the US and Ontario in Canada to
test the proposed GSA-GxE framework. In these locations, 372 maize lines were grown
with approximately one million molecular markers, 8171 individuals yield measurements
with a yield average of 223.1 (bu A−1), and 15 climate variables were registered during the
79-day long growing season between 2014 and 2017. The ECs matrices were built from the
15 climate time series (i.e., Tmin, Tmean, Tmax, DPmin, DPmean, DPmax, RHmin, RHmean, RHmax,
SRmin, SRmean, SRmax, Racc, WSmean, and WDmean). The total number of environmental
covariables in each G2F experiment is q = 79 × 15 = 1185.

2.3. PAWN Global Sensitivity Analysis (GSA)

The PAWN GSA technique is a density-based GSA method that provides the sensitivity
index of model output to input variations based on a Cumulative Distribution Function
(CDF) developed by [73]. The PAWN methodology’s function between output and inputs
is described as Equation (14):

Y = f (X1, X2, · · · , Xi) (14)

where Y is the output of a model, f ( ) is the relationship between input(s) and output, and
X1, X2, · · · , Xi are the inputs to the model.

In PAWN, the Y can be the model performance metric which is calculated between the
observation measurements and the simulated values like the coefficient of determination
(R2). The PAWN methodology is implemented for an unconditional and conditional phase.
In the unconditional phase, the model is implemented simply given inputs X1, X2, · · · , Xi
and the output Y is generated [Y = fUnc.(X) ]. Then, the empirical CDF of output Y is
obtained [FUnc. (Y) ]. In the conditional phase, the model is implemented given inputs
X1, X2, · · · , Xi, where the uncertainty of input Xi is removed [Y = f Con.(Xi = xi) ], and the
empirical CDF of output Y is obtained [FCon. (Xi = xi) ]. In other words, one of the model’s
inputs (Xi) is kept fixed at a nominal value for the conditional phase, while all the other
model’s inputs vary across a range of feasible values like in the conditional phase. Then,
the largest difference between unconditional and conditional CDFs is the PAWN sensitivity
index of the model output to input Xi which is calculated by Kolmogorov–Smirnov (K–S)
statistics [59,73]. The K–S is a non-parametric test to identify whether two independent
samples (here unconditional and conditional CDFs) are following similar distributions [78].
It measures the absolute maximum difference between conditional and unconditional CDFs.
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The smaller K–S statistics, the more similar the CDFs are and, consequently, the lower the
PAWN sensitivity index is [79]. The K–S statistics are formulated as below:

D (Xi) = max
Y

| FUnc. (Y)− FCon. (Y|Xi = xi)| (15)

where, D (Xi) is the K–S statistics as the sensitivity index of output Y (the yield predictabil-
ity in our case) to variable Xi (the ECs in our case), FUnc. (Y) is the empirical unconditional
CDF of Y, and FCon. (Y|Xi = xi) is the empirical conditional CDF of Y when all variables
vary in their feasible domain but the variable Xi is kept at a nominal value of xi.

The K–S statistics vary between 0 and 1. When K–S is equal to 0, there is no divergence
between the CDFs of the two samples, and when the value tends to 1 the difference between
the CDFs becomes significant [73]. Figure 2 illustrates the flowchart of PAWN.

Figure 2. The flowchart of PAWN technique in unconditional and conditional phases. If the func-
tion between inputs X1, X2, · · · , Xi and output Y is f , the model is implemented in unconditional
(Y = fUnc.(X)) and conditional phases ( fCon.(Xi = xi)). The Cumulative Distribution Functions are
obtained in unconditional phase (FUnc.(Y)) and conditional phase (FCon.(Xi = xi)). The D(Xi) is the
Kolmogorov–Smirnov statistics and SIXi is the PAWN sensitivity index of model f to variable Xi.

2.4. Coupling the GxE Model with PAWN Global Sensitivity Analysis

In this study, the sensitivity of phenotype predictability by the statistical GxE model to
climate variables is investigated. For this purpose, we coupled GSA with GxE through the
environmental covariance matrix (Ω) using the PAWN method. Figure 3 illustrates the con-
ceptualization flowchart for the coupling GSA-GxE for the unconditional and conditional
phases of PAWN. For the unconditional phase (the green box in Figure 3), we integrated the
daily ECs from all 84 G2F experiments as described in Section 2.1. All inputs were allowed
to vary across their observed domain, which provides the EC matrix and then Ω matrix is
calculated. The constructed Ω is an 84 × 84 matrix with 84 variance values in the diagonal
and 3486 covariance values in the lower/upper diagonal. Note that the lower and upper di-
agonal values are the same. Next, the GxE model is implemented in the unconditional phase
and the CDF of the GxE model performance based on R2 values is computed [FUnc. (Y)]. A
similar method is used in the conditional phase (see the purple box in Figure 3), but one
variable (Xi) is kept constant at a nominal value xi. The CDF of GxE model performance
evaluated by R2 is obtained [ FCon. (Y|Xi = xi)]. In Figure 3, we represent the conditional
phase of PAWN for T as an example of the conditional variable Xi. Other variables, includ-
ing DPmin, DPmean, DPmax, RHmin, RHmean, RHmax, SRmin, SRmean, SRmax, Racc, WSmean, and
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WDmean vary together in their domain, like they were in the unconditional phase, while
Tmin, Tmean, and Tmax remain constant at generated nominal values in the conditional phase.
Then, the K–S statistics are calculated between FUnc. (Y) and FCon. (Y|Xi = xi). To verify
this methodology, we created 100 combinations of ECs by selecting different 100 samples
of the nominal values for the conditional variable (i.e., temperature in Figure 3) and iterated
the whole conditional phase 100 times. The 100 nominal values have been generated by
dividing the range of T values [Range(Tmean) = Max(Tmean) − Min(Tmean), Range(Tmin) =
Max(Tmin) − Min(Tmin), and Range(Tmax) = Max(Tmax) − Min(Tmax)] from all observed G2F
experiments by 100 and as a result, the 100 equal-spaced nominal values are generated. In
Figure 3, T values are fixed at nominal values as follows: Tmin at tmin Nom., Tmean at tmean
Nom., and Tmax at tmax Nom. time series. The same process was applied to other variables
including SR and RH. In the case of the conditional variable R, the range of R-values from
all G2F experiments is divided by 100. Consequently, the 100 equal-spaced nominal values
produced are set to Racc for each iteration.

Figure 3. The flowchart of coupled GSA-GxE framework through environmental covariance matrix
(Ω) in unconditional and conditional phases for temperature. In unconditional phase all variables
including minimum temperature (Tmin), mean temperature (Tmean), maximum temperature (Tmax),
minimum dew point (DPmin), mean dew point (DPmean), maximum dew point (DPmax), minimum
relative humidity (RHmin), mean relative humidity (RHmean), maximum relative humidity (RHmax),
minimum solar radiation (SRmin), mean solar radiation (SRmean), maximum solar radiation (SRmax);
accumulative rainfall (Racc), mean wind speed (WSmean), and mean wind direction (WDmean) vary
all together in their observed domain and the GxE model is implemented (Y = fUnc.(T)). While
in conditional phase, all variables vary in their observed domain but Tmin, Tmean, and Tmax remain
constant at a nominal value of tmin(n), tmean(n), and tmax(n), respectively, where n is the number of
iterations (n = 1, . . ., 100). The conditional model ( fCon.(Xi = xi)) is implemented in each iteration.
The Cumulative Distribution Function of the output Y is obtained in unconditional (FUnc.(Y)) and
each iteration of conditional phase (FCon.(Xi = xi)). The D(Xi) is the Kolmogorov–Smirnov statistics
and SIXi is the PAWN sensitivity index of GxE model to temperature. A similar methodology has
been created and implemented for solar radiation (SRmin, SRmean, and SRmax) with nominal
values of srmin, srmean, and srmax, accumulative rainfall (Racc) with nominal values of racc, and
relative humidity (RHmin, RHmean, and RHmax) with nominal values of rhmin, rhmean, and rhmax,
respectively. G2F-G, G2F-E, and G2F-P represent the G2F genetic, environmental, and phenotypic
datasets, respectively.
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In the last step, after implementing all 100 iterations for a given conditional climatic
variable and calculating the 100 K–S statistics, the maximum value of the calculated K–S
measurements is presented as the PAWN sensitivity index. Here, the maximum K–S is the
PAWN sensitivity index of GxE model performance to the given conditional variable Xi
(i.e., T in Figure 3) which is obtained as follows:

SI(Xi) = max
Xi

[D(Xi)] (16)

where, SIXi is the PAWN sensitivity index of the GxE model predictability to the conditional
climatic variable Xi.

The GxE model performance sensitivity to the uncertainty of the climatic input vari-
ables including T, SR, R, and RH run 100 iterations for each climate driver of maize growth.
This approach represents 400 GxE simulations conducted at the University of Nebraska
High-Performance Computing facility. It is noteworthy that the proposed sensitivity analy-
sis framework is applicable for other or additional environmental variables, and as many
as iterations can be explored.

The GxE model predictive skill evaluated by the R2 performance metric between
observed and predicted yield values in each G2F environment is considered the output, its
sensitivity is quantified to the model inputs. The R2 is defined below in Equation (17):

R2
GxE,n = 1 − ∑M

m=1(yobsm − ŷsimm)
2

∑M
m=1(yobsm − ym)

2 (17)

where, R2
GxE,n is calculated GxE model R2 for environment n; yobsm and ŷsimm is observed

and simulated yield values for recorded individual genotype m in environment n, respec-
tively; ym is the average of the simulated yield of genotype m in environment n, and M is
the total number of recorded genotype m in environment n.

3. Results and Discussion

We present a modeling framework for the sensitivity of the maize yield predictions
to uncertainties in climate. The framework couples a GxE model that integrates the co-
variability of environmental and maize genetic molecular markers and the PAWN global
sensitivity analysis. The GSA-GxE modeling framework supports the thesis that integrated
genetics, climate, and their interactions contribute to identifying the climate variables
responsible for the improvement of the predictability of maize yields in US-CA. We consider
that the effects of climate on maize predictability can shed some light on how crops respond
and adapt to spatiotemporal fluctuations in climate and our abilities to capture such
patterns of variability and crop responses in collected data, biophysical, statistical, and
data models [8,11,12,17,80,81]. The selection of rainfall, solar radiation, temperature, and
relative humidity to create the covariance matrices for the GSA’s conditional phase followed
studies that indicate their influence on maize growth and production [24,26,70,82]. Table 1
illustrates the range of observed values used in the nonconditional phase, which represents
the climate variations that occurred between 2014 and 2017. These ranges were used to
generate the 100 nominal values for the selected variables (i.e., Tmin, Tmean, Tmax, SRmin,
SRmean, SRmax, Racc, RHmin, RHmean, and RHmax) in the conditional phases. It is noteworthy
that the developed GSA-GxE framework can be expanded to include other climate or
environmental variables released in [19,74].

The GSA-GxE framework expands what Leng et al. [26] studied as the contributions
of covariable temperature, precipitation, and radiation to maize and soybean yields in the
US. These authors also pointed out the limitations of building regression models for yield
prediction where multiple variables affect the outputs. This argument suggests the use of
covariance matrices for phenotype predictability proposed by [9], integrating the genomic
and climate complexities to enable the identification of specific climate effects on maize
yield predictions [17].



Agronomy 2024, 14, 733 11 of 22

Table 1. The observed daily minimum, daily maximum, and range of conditional variables in all
84 G2F experiments. The G2F experiment in the parenthesis is the experiment in which the minimum
or maximum values are observed.

Conditional Variable Min Max Range

Tmin (◦C) −10.7 (2014NYH1) 30.5 (2017ARH2) 41.2

Tmean (◦C) −6.4 (2014NYH2) 32.5 (2017ARH2) 38.9

Tmax (◦C) −5.7 (2014NYH2) 51.4 (2016IAH2) 57.1

SRmin (W/m2) 0 (All) 0 (All) 0

SRmean (W/m2) 0 (2017IAH4) 1168.3 (2017TXH1) 1168.3

SRmax (W/m2)
0 (2017IAH1, 2017IAH2,
2017IAH3, 2017IAH4) 1507.0 (2017MOH1) 1507.0

Racc (mm) 0 (All) 451.8 (2016IAH1) 451.8

RHmin (%) 0 (2016NCH1, 2017ARH2) 99.5 (2014IAH3) 99.5

RHmean (%) 10.2 (2017WIH1) 99.9 (2014IAH3) 89.7

RHmax (%) 11.2 (2017IAH3) 100.0 (All except 2016GAH2
and 2017NYH1) 88.8

3.1. The Environmental Covariance Matrix

The unconditional phase of GSA-GxE has been implemented when all 15 variables
are set to the observed time series at each G2F experiment, and the unconditional Ω is
calculated. The conditional phase of the coupled GSA-GxE framework has been iterated
for each of the 100 generated nominal values, and in each iteration, the conditional Ω is
computed. The covariances values quantify the environmental similarity using environ-
mental co-variability between pairs of the G2F experiments time series. In other words, the
covariance function measures the joint variability of the G2F experiments’ hydroclimatic
time series by synthesizing the co-variability of 15 climatic variables. Figure 4 shows the
histograms of covariance values in the unconditional phase (in gray color) and conditional
phase for each conditional variable, including temperature, solar radiation, rainfall, and
relative humidity.

The unconditional Ω is the same for any given variable as the conditional variable
since it has been calculated based on the observed time series for all 15 hydroclimatic
variables across the G2F study area. The conditional Ω for any given conditional variable
is calculated in each iteration with the given generated nominal value. The selected
nominal value, which remains constant in all G2F experiments in an iteration for a given
conditional variable, does not change the joint variability of the time series between G2F
experiments. Consequently, the calculated conditional Ω in iterations 1 through 100 remains
the same since the covariance function measures how the time series of each pair of the
G2F experiments covary together. Also, in Figure 4 the probabilities of unconditional and
conditional covariance values are slightly different. These slight differences align with
our previous study [72], where we coupled the GSA with Ω (the GxE matrix format can
be found in Figure 4 in [72]). In that study, we found the PAWN sensitivity index of Ω to
T, SR, R, and RH equal 0.091, 0.084, 0.077, and 0.082, respectively. In the next step of the
GSA-GxE, the observed slight contrasts between calculated unconditional and conditional
Ω interacted with the genetic covariance G through the GxE model. These contrasts will
be propagated by the model using the product of Ω and G and the ranked hydroclimatic
variables, from the most to the least impactful to the maize yield predictability.

Phenotypes like grain yields are affected by genetics, environmental drivers, and the
complex interactions between them [9], meaning that the environmental similarities are
not linearly affecting the yields, the predicted values by GxE models, and the resultant
errors. In a study by [83], the GxE interaction is the most important factor compared to
the independent components used for maize yield predictability in the G2F layout. This
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complexity introduces a potential error propagation and increases the sensitivity of maize
yield predictability to the GxE compared to the sensitivity of Ω to hydroclimatic variables.

Figure 4. The histograms of environmental covariance values between each pair of 84 G2F exper-
iments in (a) conditional phase for temperature (Con.T), (b) conditional phase for solar radiation
(Con.SR), (c) conditional phase for rainfall (Con.R), and (d) conditional phase for relative humidity
(Con.RH). The gray lines show the environmental covariance values in unconditional phase.

Another complexity in maize phenotype predictability is that the tested maize varieties
differ across the designed G2F experiments [18]. This genetic variability among the trials
is considered in the GxE model through genetic covariance (G). Similarly, to Ω, which
quantifies the similarity among the environments based on hydroclimatic time series, the
calculated G measures the similarity among the maize varieties using molecular mark-
ers [83]. These variations in the molecular genetic markers lead to different phenotypic
responses to climate conditions. For example, [84] showed that the responses of different
maize species with different thresholds of tolerance are affected differently by temperature
means and extremes. Thus, the effect of hydroclimatic variables and their interaction with
genetic markers through the environmental covariance (Ω) and genetic covariance (G) on
the maize yield predictability can be estimated.

As mentioned above, the study of [72] contrasted the conditional and unconditional
Ω to calculate the sensitivity of covariance values to fluctuations in the hydroclimate in
one iteration by coupling GSA and Ω. In the present study, we introduced the GSA-GxE



Agronomy 2024, 14, 733 13 of 22

coupling, extending the number of iterations for verification purposes. The test the GSA-
GxE framework we used a four-year dataset with a limited number of trials, mainly over
the eastern and central US. According to this testing procedure, we could miss the effects
of long-term modes of climate variability and their co-variability with genetics. These
data limitations can be tackled by releasing and using new hydroclimatic data in a more
significant number of G2F environments over time and space scales, which may enhance
the model predictability [17]. Nevertheless, the proposed GSA-GxE methodology can
be expanded to other locations and tested with datasets other than G2F. Using released
environmental and OMICs datasets from other crop breeding programs, such as the In-
ternational Center for Maize and Wheat Improvement, is also recommended to test and
enhance the proposed sensitivity analysis framework.

3.2. The GSA-GxE Framework

The sensitivity analyses have been explored from multiple perspectives [57,85], includ-
ing those aimed at identifying the main drivers of environmental change using physical
and data-driven models [58–60]. In crop phenotyping diagnostics and prognostics, such
efforts have been centered on the use of crop and Earth System models and statistical
analyses of climate and crop yields [22,26,70,80,86–92]. Authors [72] introduced a PAWN’s
GSA coupler for Ω using the G2F initiative data, which is the foundation for the GSA-GxE
coupler presented here. The GSA-GxE coupler estimated the sensitivity of the GxE model
performance to the constructed Ω, and accounted for the possible variations in climate as
drivers of maize yield predictability.

The sensitivity of the GxE model performance to the constructed conditional envi-
ronmental covariance matrix has been assessed successfully for T, SR, R, and RH, which
supports the central thesis of quantifying the GxE performance sensitivity to test the hydro-
climatic drivers for maize yield predictability. Figure 5 illustrates the unconditional and
conditional CDFs of the GxE model performance for T, SR, R, and RH. The 100 iterations
for each conditional variable take approximately one month in a Windows system with an
Intel Core i9 configuration. The codes made available to the public allow users to perform
this methodology for as many iterations as they aim. The tested iterations in this study evi-
denced that the differences between the SI values for all variables were minimal, indicating
that such a number of iterations could be sufficient to achieve the maximum SI value. The
SI values show the maximum difference between the unconditional and conditional CDFs
(K–S statistics) among all iterations. After completing all 100 iterations, the maximum
derived K–S has been reported as the PAWN sensitivity index (SIXi ; Equation (16)) of the
GxE model performance (R2 in Equation (17)) for a given conditional variable.

Figure 5. Cont.
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Figure 5. The Cumulative Distribution Function (CDF) of coefficient of determination (R2) of GxE
performance for conditional variable (a) temperature, (b) solar radiation, (c) rainfall, and (d) relative
humidity. The solid black line represents the CDF of unconditional phase, and the red lines are the
CDFs of conditional phase for temperature in (a), the yellow lines are the CDFs of conditional phase
for solar radiation in (b), the blue lines are the CDFs of conditional phase for rainfall in (c), and
the purple lines are the CDFs of conditional phase for relative humidity in (d) for all 100 iterations.
Each line corresponds to a unique generated nominal value. The dashed lines represent the CDF of
PAWN sensitivity index (SI). In (a) the four red dashed lines represent the SI = 0.18 to temperature,
in (b) the yellow dashed line represents the SI = 0.25 to solar radiation, in (c) the three blue dashed
lines represents the SI = 0.17 to rainfall, and in (d) five purple dashed lines represent the SI = 0.17 to
relative humidity. The light-colored solid lines in each panel are associated with the iterations with SI
less than the maximum SI.

The largest PAWN sensitivity index for the area of study is solar radiation (SISR = 0.25).
After that, temperature is the most effective climatic driver in GxE model performance
(SIT = 0.18). The sensitivity indices calculated for rainfall and relative humidity are the
same (SIR = SIRH = 0.17). The dominance of solar radiation can be supported by biophysical
crop modeling and observations. For instance, Ref. [93] suggested that solar radiation’s
effects on maize yields are often overlooked compared to other climatic factors. Their
study shows that 27% of the maize production growth can be attributed to increasing
solar radiation in the U.S. Authors [94] also identified that the effects of solar radiation
on maize yields surpassed those of temperature and rainfall. Yet other patterns emerge
when solar radiation is compounded with increasing variability of precipitation, leading to
simulated less conspicuous changes in yields. On the other hand, using observations and
physiological attributions between climate and crop development, Ref. [26] shed some light
on how photosynthesis and solar radiation drive crop development in the conterminous
US. Thus, the SI-aggregates in Figure 5 are indicative of how the GSA-GxE coupler and the
contrasting SR, R, RH, and T, as compound and individual feasibility spaces, evidence the
contributions of climate factors to maize yield predictions in the U.S. and Canada.

The effects of markers and environmental covariates using the covariance structures
introduced by [9] and coupled to the GSA by [61] at each location illustrate the dominance
of different climate variables on maize yield predictability. Figure 6 shows the spatial
distribution of the most and second most effective climatic drivers for maize yield pre-
dictability and their associated GxE modeling performance (R2). The most sensitive climate
drivers observed in Figure 6a indicate that R dominates in 26 sites, while RH, SR, and T
are the main controls of maize predictability in 21, 20, and 17 sites, respectively. Figure 6b
shows that RH dominates SR, T, and R as the second most influential driver of maize
predictability in 26, 24, 19, and 15 locations, respectively. Additionally, there is a consistent
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pattern in the most and the second most effective predictors are the sequence RH, SR,
and T. Authors [80] indicated that crop sensitivity studies have been dominated by the
assessment of how temperature and, to a lesser extent rainfall affect crop yields. Other
studies have assessed the compounded effect of temperature with precipitation deficits in
shortening the crop’s growing season [24,29,80,86,87,95–97]. While the compounded effect
of temperature and precipitation on yields can be seen as a crop’s adaptive mechanism
when yields are sustained, long-growing maize varieties can be sensitive to water deficits
or surpluses [61,88,98]. The sequences presented here indicate the patterns of climate vari-
ability need to be further explored and explained. Authors [10,32] provide a framework to
model the complex interactions driven by agricultural land use in West Africa (i.e., climate,
socioeconomic, and land use). Authors [22] also highlighted the key roles of genomics
and enviromics interconnections for crop phenotyping in a changing climate. However, it
remains unclear how genetics and climate will interact and lead to secure agriculture in the
short and long-term future.

Another perspective on the compounding effect of climate or environmental vari-
ables on maize yields and the sequence RH, SR, and T in Figure 6 can be linked to the
use of observations and crop, Earth system, statistical and data modeling [29,80,87,92].
Figure 6 illustrates how the global sensitivity analysis and the construction of environmen-
tal covariates enable the conceptualization of compounding environmental variables and
identifying their individual contributions. GSA-GxE operates within a feasibility space that
captures the complexity of plants’ response to spatiotemporal environmental variations.
Such variations can also reflect our abilities to capture or parameterize processes using
high-dimensional ecosystems of digital resources (i.e., data, parameterizations, analytics,
and conceptualizations). Authors [99] used a crop model to assess how the effects of
multiple factors on crop yields are sensitive to the spatial resolution of the inputs, the
parameters in the implementation of the model, and, eventually, the results. While statisti-
cal approaches have used an explicit integration of genetic-by-environment interactions
into the crop yield simulations, it remains unclear how the individual factors play a role
across large-scale areas [9,13,17,92]. Authors [25,80] highlight the need to characterize the
individual contributions of climate factors on crop yield predictions. The effort presented
here addresses this point and explores the relative contribution of four climate variables,
which scales up what [17,91] showed. Some of those changes have not been characterized
in terms of the individual contributions of multiple climate factors [23] and continue the
activities launched by the G2F Initiative, including the studies of [16,83,91,100]. Further-
more, the resulting crop yield sensitivities to climate factors and their distribution across
US-CAN suggest the need to identify the geospatial and temporal patterns of variability in
the genetic-by-climate interactions. Such patterns and additional sources of predictability
could emerge from monitoring technologies that combine unmanned aerial vehicles and
eddy covariance towers [101,102], co-segmentation methods that enhance current computer
vision-based phenotyping [103,104], remote sensing-based modeling for diagnostics and
predictions of biophysical variables [105], and technologies to improve best management
practices. These advances can contribute to seeing how predicted weather and climate
conditions can aid hybrid selection, manage cultivars during the growing season, and
prevent or mitigate major impacts of extreme hydrometeorological and climate events.
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Figure 6. The spatial distribution of the (a) largest (maximum of R2), and the (b) second largest GxE
model performance in the G2F area of study extracted from the analysis of years 2014–2017. The
color represents the calculated Kolmogorov–Smirnov statistics and the size of markers represents
the size of R2. The minimum, median, and maximum R2 values and their associated sizes for each
marker have been selected to be shown in the legend. The circle marker represents the sites where
temperature (T), the diamond marker represents the sites where solar radiation (SR), the triangle
marker represents the sites where rainfall (R), and the square marker represents the sites where
relative humidity (RH) is the most important hydroclimatic variable.

4. Conclusions

In this study, we developed a novel methodology to couple a GSA technique called
PAWN with the statistical GxE model to quantify and rank the sensitivity index of maize
yields predictability to hydroclimatic drivers, including T, SR, R, and RH variables. We
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take advantage of the multi-dimensional G2F database, which releases environmental,
genetic, molecular markers, and phenotypes for maize grain yield from 2014 to 2017 across
84 experimental fields in North America. The PAWN technique has been linked to the
GxE model through constructing environmental covariance matrices (Ω). The covariance
function enables incorporating the co-variability effect of multiple climatic variables on
the maize yield predictability by the GxE model. The coupled GSA-GxE framework has
been tested for T (including Tmin, Tmean, and Tmax), SR (including SRmin, SRmean, and SRmax),
R (including Racc), and RH (including RHmin, RHmean, and RHmax) covariables and the
PAWN SIs have been obtained based on K–S statistics. The GSA-GxE couple has been
implemented in two phases of unconditional and 100 iterations of conditional phase for
each given conditional variable.

In conclusion, the increase in the sensitivity of maize yield predictability by the GxE
model (R2) compared to the sensitivity of environmental matrices (Ω) to the conditional
hydroclimatic variables confirmed the large effect of genetic and environmental interaction
effect on the model performance. This effect is conceptualized by the product of genetic
molecular markers (G) and the environmental (Ω) covariances in the GxE model.

The average shows the superior sensitivity of GxE performance to SR (SISR = 0.25).
Afterward, T is the most influential variable on model predictive skill (SIT = 0.18). The
sensitivity level of both R and RH has been estimated to be the same and slightly smaller
than T (SIR = SIRH = 0.17). These results align with several previous studies showing SR’s
major impact on average maize yield predictability. However, the geospatial sensitivity
analysis illustrated that R is the responsible input variable to achieve the largest R2 values
in 30% of the G2F experimental sites. The next dominant variable in the GxE model
predictive skill is RH in 31% of the locations. These results suggest that the geospatial
sensitivity analysis proposed by the GSA-GxE framework will recognize the most influential
environmental variables in the GxE performance improvement by considering the tested
genetic variability in each experiment.

Finally, one of the limitations of this study is the limited number of effective en-
vironmental and phenotypic variables used to estimate the sensitivity of maize yield
predictability. The authors recommend the proposed GSA-GxE methodology for further
studies in sensitivity analysis of crop phenotypes predictability using GxE to other possible
influential environmental variabilities like wind speed, soil properties, and other crop
phenotypes like crop height and grain moisture. In this case, the researcher could rank
all the effective environmental key drivers and screen the uninfluential ones for various
phenotypes. The GxE performance sensitivity to the hydro-climatic drivers during each
phenological development stage can shed light on the specific time intervals with high-level
sensitivity to the environmental variation during crop growth. Also, other statistical GxE
models that include additional environmental matrix structures and extra genetic effects not
captured by the molecular markers can strengthen the predictability of phenotypes [9,106]
and their response to extreme environments. Other GSA techniques can enhance concep-
tual frameworks to find sources of predictability and error propagation in modeling efforts
driven by data or biophysics.
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