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Abstract— Many physical systems have underlying safety
considerations that require that the strategy deployed ensures
the satisfaction of a set of constraints. Further, often we have
only partial information on the state of the system. We study
the problem of safe real-time decision making under uncer-
tainty. In this paper, we formulate a conservative stochastic
contextual bandit formulation for real-time decision making
when an adversary chooses a distribution on the set of possible
contexts and the learner is subject to certain safety/performance
constraints. The learner observes only the context distribution
and the exact context is unknown, and the goal is to develop an
algorithm that selects a sequence of optimal actions to maximize
the cumulative reward without violating the safety constraints
at any time step. By leveraging the UCB algorithm for this
setting, we propose a conservative linear UCB algorithm for
stochastic bandits with context distribution. We prove an upper
bound on the regret of the algorithm and show that it can
be decomposed into three terms: (i) an upper bound for the
regret of the standard linear UCB algorithm, (ii) a constant
term (independent of time horizon) that accounts for the loss
of being conservative in order to satisfy the safety constraint,
and (ii) a constant term (independent of time horizon) that
accounts for the loss for the contexts being unknown and only
the distrbution being known. To validate the performance of our
approach we perform extensive simulations on synthetic data
and on real-world maize data collected through the Genomes
to Fields (G2F) initiative.

I. INTRODUCTION

Decision making under critical and uncertain situations is
a common problem in a wide range of domains including
online marketing, finance, health sciences, and robotics.
There exist learning algorithms that can learn good poli-
cies/strategies for optimal decision making. Contextual ban-
dits is one such framework that models the sequential deci-
sion making process by utilizing the side information which
is referred to as context [1]. One real-world example of
a contextual multi-armed bandit problem is when a news
website has to make a decision about which articles to
display to a visitor when some information about the visitor
is known [2]. In the contextual bandit model a learner
interacts with the environment in several rounds. In each
round the environment presents a context to the learner and
the goal of the learner is to choose an action. Upon selecting
an action the learner is presented with a reward associated
with the chosen action and the goal of the learner is to
maximize the cumulative reward.

Most of the existing work on contextual bandit model as-
sumes that the contexts are known and there are no additional
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constraints on the learner. However, in many applications
there exists scenarios where the contexts are noisy or are
forecasting measurements (e.g., weather forecasting or stock
market prediction) so that the actual context is unknown,
rather a distribution on the context is only available. In such
cases, the exact context is a sample from this distribution.
Such a model has been studied in [3] and an Upper Confi-
dence Bound (UCB)-based algorithm has been proposed with
regret bound guarantee. Additionally, safety/performance is
a major concern while making decisions and it is crucial to
develop learning algorithms that can perform decision mak-
ing while ensuring that certain safety/performance conditions
are satisfied at each round. Contextual bandits with safety
constraints have been studied in [4], [5], [6] and algorithms
with guarantees were proposed.

Our goal in this paper is to develop a framework for
solving sequential decision making when the contexts are un-
known and there are safety/performance constraints imposed
on the learner. We motivate our problem setting through a
scenario. Consider a scenario where the goal is to develop a
recommendation system for smart farming such that based on
the details of the farm and the farming conditions, including
information on the weather and soil properties, the system
presents recommendations on the choice of the crop/seed
in order to maximize the overall net profit of the farmer.
In this setting, the contexts are not observable, rather a
distribution of the contexts are known as the weather and soil
conditions are forecasting rather than accurate measurements.
Additionally, often farmers impose performance constraints
such as the net profit must be at least a certain value. Thus
for a given farmland and set of soil properties and climate
indices, our goal is to provide recommendations for the
crop/seed type such that the annual net profit of the farmer
is maximized and the associated constraints are satisfied.

This paper makes the following contributions.
• We formulate a conservative stochastic contextual ban-

dit formulation for real-time decision making when
an adversary chooses a distribution on the set of
possible contexts and the learner is subject to certain
safety/performance constraints.

• We present a UCB-based algorithm, conservative (safe)
linear UCB algorithm for stochastic bandits with con-
text distribution and unknown contexts.

• We prove an upper bound on the regret of the algorithm
and show that it can be decomposed into three terms:
(i) an upper bound for the regret of the standard linear
UCB algorithm, (ii) a constant term (independent of
time horizon) that accounts for the loss of being con-
servative in order to satisfy the safety constraint, and
(ii) a constant term (independent of time horizon) that
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accounts for the loss for the contexts being unknown
and only the distrbution being known.

• We validated the performance of our approach via
extensive simulations on synthetic data and on real-
world maize data collected through the Genomes to
Fields (G2F) initiative.

The rest of the paper is organized as follows. In Section II
we present the notations and the problem formulation. In
Section III, we present the related work. In Section IV we
present the solution approach for the conservative stochastic
bandit problem. In Section V, we present the regret analysis
and prove an upper bound on the regret of our proposed
algorithm. In Section VII, we present the conclusion and
future work.

II. NOTATIONS AND PROBLEM FORMULATION

In this section, we first specify the standard linear bandit
problem below and then explain the stochastic constrained
bandit setting. Let X denote the action set and C denote
the context set. The environment is defined by a fixed and
unknown function y : X × C → R. In linear bandit setting,
at any time t ∈ N, the agent observes a context ct ∈ C and
has to choose an action xt ∈ X . Each context-action pair
(x,c), x ∈ X and c ∈ C, is associated with a feature vector
φx,c ∈ Rd , i.e., φxt ,ct = φ(xt ,ct). Upon selection of an action
xt , the agent observes a reward yt ∈ R

yt := 〈θ ?,φxt ,ct 〉+ηt , (1)

where θ ? ∈ Rd is the unknown reward parameter,
〈θ ?,φxt ,ct 〉= r(xt ,ct) is the expected reward for action xt at
time t, i.e., r(xt ,ct) = E[yt ], and ηt is σ−Gaussian, additive
noise. The goal is to choose optimal actions x?t for all t ∈ T
such that the cumulative reward, ∑

T
t=1 yt , is maximized. This

is equivalent to minimizing the cumulative (pseudo)-regret
denoted as

RT =
T

∑
t=1
〈θ ?,φ t

x?t ,ct
〉−

T

∑
t=1
〈θ ?,φ t

xt ,ct 〉. (2)

Here x?t is the optimal/best action for context ct and xt is
the action chosen by the agent for context ct . We make
the standard assumptions on the additive noise ηt and the
unknown parameter θ ? [3], [4].

Assumption 1. Each element ηt of the noise sequence
{ηt}∞

t=1 is conditionally σ−subGaussian, i.e.,

For all ζ ∈R,E[eζ ηt |x1:t,ε1:t−1 ]> exp(
ζ 2σ2

2
).

Assumption 2. There exists constant A,D > 0 such that
‖θ ?‖2 6 A, ‖φx,ct‖2 6 D, and φ>x,ct θ ∈ [0,1], for all t and
all x ∈ X .

In this work, we consider a conservative and stochastic
linear bandit setting with context distribution and unknown
contexts, i.e., a bandit problem with performance constraints
and unknown contexts. We assume that the context at time
t, ct is unobservable rather only a distribution of the context
denoted as µt is observed by the agent. At round t, the en-
vironment chooses a distribution µt ∈P(C) over the context

set and samples a context realization ct ∼ µt . The learner
observes only µt and not ct and chooses an action, say xt .
In addition, there exists a baseline policy (farmer’s strategy)
πb that at each round t, selects action bt ∈ X and incurs the
expected reward r(bt ,ct) = 〈θ ?,φbt ,ct 〉. We assume that the
expected rewards of the actions taken by the baseline policy,
r(bt ,ct), are known. This assumption is often reasonable as
we typically have access to a large amount of data generated
using the baseline policy (i.e., the farmer’s strategy) and
hence can obtain a good estimate of the baseline reward
function [4].

Based on the baseline policy, a conservative linear bandit
imposes performance constraints. The constraints are such
that at round t, the difference between the performances of
the baseline and the learner’s policies should remain above a
pre-defined fraction α ∈ (0,1) of the baseline performance.
Our aim is to learn an optimal mapping/policy g : C→X of
contexts to actions such that the cumulative reward, ∑

T
t=1 yt is

maximized while simultaneously satisfying the performance
constraints. Formally, our aim is to minimize the cumulative
regret

RT =
T

∑
t=1
〈θ ?,φx?t ,ct 〉−

T

∑
t=1
〈θ ?,φxt ,ct 〉. (3)

such that
t

∑
i=1

r(bt ,ct)−
t

∑
i=1

r(xt ,ct)6 α

t

∑
i=1

r(bt ,ct), for all t ∈ T. (4)

Here, x?t = argmaxx∈X Ec∼µt [r(x,c)] is the best action pro-
vided we know µt , but not ct , T is the number of rounds,
and α ∈ (0,1) is the maximum decrease in the performance
the decision maker is willing to accept. Eq. (4) is equivalent
to ∑

t
i=1 r(xt ,ct)> (1−α)∑

t
i=1 r(bt ,ct).

III. RELATED WORK

Bandit algorithms are well studied in the literature, for
a survey see [1] and [7]. Recently, contextual bandits have
attracted increased attention. Related to our work is stochas-
tic contextual bandits, where the learner chooses actions
after observing the contexts and the goal is to learn an
optimal mapping from contexts to actions. While stochastic
contextual bandits have similarities to Reinforcement Learn-
ing (RL) [8], the key difference is that the sequence of
contexts can be arbitrary and even chosen by an adversary
unlike in an RL setting which has a specific transition
structure. Linear contextual bandits is a popular variant of
the contextual bandits and it has been studied in [9], [10],
[11], [2], [12], [13], [14] and strong theoretical guarantees
are established using different solution approaches. The most
popular solution approach is the Upper Confidence Bound
(UCB) algorithm [2], [15]. The UCB was later improved
in [9], [11], [16] with stronger guarantees. Another solution
approach is using Thompson sampling and algorithms with
theoretical guarantees are provided in [13]. In the linear
contextual bandit setting, there are no constraints that need
to be satisfied by the learner and the context in round t is
known and hence it is a special case of the bandit setting
considered in this paper with no constraints and the choice



of the distribution µt as a Dirac delta distribution denoted as
µt = δct for all t ∈ T .

Our work is more closely related to two settings of the
contextual bandit problem, the stochastic bandit framework
and the constrained contextual bandit framework. A linear
contextual bandit setting with uncertainty in the context is
studied in [3], [17], [18]. While [18] considered a setting
with perturbed contexts, [3] considered a setting in which
the context itself is not observable rather a distribution on
the context is available and is more closely related to this
work. We note that, there are no safety constraints in [3].
There are two different settings where constraints have been
applied to the stochastic MAB problem [4], [5], [19], [6],
[20], [21]. The first line of work considers the MAB problem
with global budget constraints where each arm is associated
with a random resource consumption and the objective is
to maximize the total reward before the learner exhausts all
of its resources [19], [22]. Constrained linear bandit with
linear budget constraints is studied in [19] and a primal-
dual algorithm is presented. A generalized version of the
problem studied in [19], where the objective is concave
and constraints are convex is studied in [22] and a UCB-
based algorithm was proposed. We note that, the constraints
in [19], [22] are modeled as budget constraints unlike in
this paper which consider a performance constraint. The
second line of work considers safety/performance constraints
for bandit problems by ensuring that the performance of
the learning algorithm should remain above a pre-defined
fraction of the performance of a baseline policy [4], [5], [6].
Among these our work is closely related to [4], but the key
difference is that the contextx are unknown in our setting.
In this paper we built on the works in [3], [4] to address
the conservative and stochastic contextual bandit problem in
which the contexts are uncertain and the learner is subject to
performance constraints imposed by some baseline policy.

IV. SOLUTION APPROACH: STOCHASTIC CONSERVATIVE
CONTEXTUAL BANDIT

In this section, we present the algorithm for solving
the stochastic conservative contextual bandit problem. Our
solution approach is built on the works of [3] and [4].
Given the distribution µt , we construct the expected feature
vector, Ψt = {ψ̄x,µt : x ∈ X } where {ψ̄x,µt := Ec∼µt [φx,c]}
(step: 5). We note that, each feature ψ̄x,µt corresponds to
exactly one action x ∈ X and we use Ψt as the feature
context set at time t. The proposed algorithm is based on
the optimism in the face of uncertainty principle, where the
algorithm maintains a confidence set Bt ⊂Rd that contains
the unknown parameter vector θ ? with high probability [9].
The algorithm then chooses an optimistic estimate θ̃t =
argmax

θ̂∈Bt
(maxx∈X ψ̄>x,µt θ̂) and chooses an action x′t =

argmaxx∈X ψ̄>x,µt θ̃t . Equivalently the algorithm chooses the
pair (x′t , θ̃t) ∈ arg max

(x,θ̂)∈X×Bt

ψ̄>x,µt θ̂ which jointly maximizes

the reward.
To ensure that the action chosen by the algorithm guar-

antees satisfaction of the constraints, the algorithm plays
the action x′t only if it satisfies the constraint for the worst
choice of the parameter θ̂ ∈ Bt [4]. We formally define

this by introducing two sets Sb
t−1 and St−1. Let St−1 be

the set of rounds i before round t at which the algorithm
has played the optimistic action, i.e., xi = x′i. Then Sb

t−1 =
{1,2, . . . , t−1}−St−1 is the set of rounds j before round t
at which the algorithm has followed the baseline policy, i.e.,
x j = b j. To ensure that constraint in Eq. (4) is satisfied the
algorithm plays optimal action xt = x′t at round t if it satisfies

min
θ̂∈Bt

[
∑

i∈Sb
t−1

r(bt ,ct)+(∑
i∈St−1

ψ̄xi,µi)
>

θ̂ +ψ̄
>
x′t ,µt

θ̂

]
>(1−α)

t

∑
i=1

r(bi,ci),

and plays the action chosen by the farmer, i.e., xt = bt otherwise.

Algorithm IV.1 Pseudocode for conservative stochastic con-
textual bandit with context distribution

Input: α,B = Rd

1: Initialize: S0 = /0, `0 = 0 ∈ Rd , B1 = B
2: for t = 1,2, . . . ,T do
3: Nature chooses µt ∈ P(C)
4: Learner observes µt
5: Set Ψt = {ψ̄x,µt : x∈X } where {ψ̄x,µt :=Ec∼µt [φx,c]}
6: Query baseline strategy bt ← π(Ψt)
7: Find (x′t , θ̃t) ∈ arg max

(x,θ̂)∈X×Bt

ψ̄>x,µt θ̂

8: Compute Lt = min
θ̂∈Bt
〈`t−1 + ψ̄x′t ,µt , θ̂〉

9: if Lt +∑i∈Sb
t−1

r(bt ,ct)> (1−α)∑
t
i=1 r(bt ,ct) then

10: Play xt = x′t and observe reward yt in Eq. (1)
11: Set `t = `t−1 + ψ̄xt ,µt , St = St−1∪ t, Sb

t = Sb
t−1

12: Given xt ,yt construct Bt+1 using Eq. (6)
13: else
14: Play xt = bt and observe reward yt in Eq. (1)
15: Set `t = `t−1, St = St−1, Sb

t = Sb
t−1∪ t, Bt+1 = Bt

16: end if
17: end for

Construction of the Confidence Set Bt : We denote the confi-
dence set in round t as Bt . The proposed algorithm starts by the
most general confidence set i.e., B1 = B = Rd , and updates the
confidence set only when the optimistic action proposed by the
learner is played. This is because that unless the learner’s action
is played, no additional information is gained about the unknown
parameter θ . Let St = {i1, i2, . . . , imt} be the set of rounds up
to and including t during which the the algorithm played the
optimistic action. Here mt = |St |. For a fixed value λ > 0, the
regularized least square estimate of θ̂ at round t is given by

θ̄t =
(

ΦtΦ
>
t +λ I

)−1
ΦtYt , (5)

where Φt = [ψ̄xi1 ,µi1
, ψ̄xi2 ,µi2

, . . . , ψ̄xmt ,µmt
] and Yt =

[yi1 ,yi2 , . . . ,ymt ]
>. For a given confidence parameter δ ∈ (0,1),

we construct the confidence set for the next round t +1 as

Bt+1 = {θ̂ ∈Rd :
∥∥θ̂ − θ̄t

∥∥
Vt
≤ βt+1}, (6)

where βt+1 = σ

√
d log(

1+(mt +1)D2/λ

δ
) +
√

λA, Vt = λ I +

ΦtΦ
>
t , and the weighted norm is defined as ‖u‖V =

√
u>Vu for

any u ∈Rd and positive definite V ∈Rd×d .



Proposition 1. For any δ > 0 and the confidence set Bt defined
by Eq. (6), we have

P[θ ? ∈ Bt ,∀t ∈ N]> 1−δ .

At each round t, Algorithm IV.1 ensures that Eq. (4) holds for
all θ ∈ Bt . From Proposition 1, P[θ ? ∈ Bt ]> 1−δ for all t ∈ N.
Thus, Proposition 1 ensures that at each round t, Algorithm IV.1
satisfies the baseline criteria in Eq. (4) with probability at least
1−δ .

V. REGRET ANALYSIS

In this section, we prove the regret bound for Algorithm IV.1.
Let ∆t

bt
= r(x?t ,ct)− r(bt ,ct) be the baseline gap at round t, i.e.,

the difference between the expected rewards of optimal action
and baseline action at round t.

Assumption 3. There exists 0 ≤ ∆` ≤ ∆h and 0 < r` < rh such
that, at each round t,

∆` ≤ ∆
t
bt
≤ ∆h and r` ≤ r(bt ,ct)≤ rh.

Since the rewards belong to [0,1] (Assumption 2), we set
∆h = rh = 1, and ∆` = 0. The reward lower bound rl ensures
that the baseline policy satisfies a minimum level of performance
guarantee at each round of the algorithm.

Proposition 2 ([3], Lemma 3). The regret of the UCB algorithm
for linear stochastic bandits with expected feature set Ψt is
bounded in time T with probability at least 1−δ ,

RT ≤RUCB
T +4

√
2T log

1
δ
.

Lemma 1. The regret of Algorithm IV.1 with expected feature set
Ψt is bounded in time T with probability at least 1−δ ,

RT ≤RUCB
ST

+4

√
2mT log

1
δ
+nT ∆h,

where RUCB
ST

is the cumulative (pseudo)-regret of linear UCB
algorithm at rounds t ∈ ST , mT = |ST | is the number of times
Algorithm IV.1 played the learner’s action, and nT = |Sb

t | =
T −|ST |= T −mT is the number of times Algorithm IV.1 played
the baseline action.

Proof. From the definition of regret in Eq. (2)

RT =
T

∑
t=1

r(x?t ,ct)−
T

∑
t=1

r(xt ,ct),

= ∑
t∈ST

(r(x?t ,ct)− r(xt ,ct))+∑
t∈Sb

T

(r(x?t ,ct)−r(xt ,ct)),

= ∑
t∈ST

(r(x?t ,ct)− r(xt ,ct))+ ∑
t∈Sb

T

∆
t
bt
,

≤ ∑
t∈ST

(r(x?t ,ct)− r(xt ,ct))+nT ∆h,

≤ RUCB
ST

+4

√
2mT log

1
δ
+nT ∆h. (7)

Inequality in Eq. (7) follows from Proposition 2 since for t ∈ ST ,
Algorithm IV.1 plays the same actions as the UCB algorithm in
[3] and this completes the proof.

The regret bound for linear UCB algorithm for the confidence
set given in Eq. (6) is given in [9]. Let ε be the event that θ ? ∈ Bt
for all t ∈N. By Proposition 1 the probability of ε is at least 1−δ .
The result below from [9] presents the bound forRUCB

ST
.

Proposition 3 ([4], Proposition 3). On event ε , for any T ∈ N,
we have

RUCB
ST
≤ 4

√
mT d log

(
λ +

mT D
d

)
×
[
A
√

λ +σ

√
2log(1/δ )+d log

(
1+

mT D
λd

)
=O

(
d log(

D
λδ

T )
√

T
)
. (8)

We note that, to bound the regret of Algorithm IV.1, we only
need to find upper bounds on nT , the number of times Algo-
rithm IV.1 deviates from the UCB algorithm for linear stochastic
bandits and plays the baseline, and mT , the number of times
Algorithm IV.1 plays the action suggested by the UCB algorithm
for linear stochastic bandits. Since mT = T − nT , it also suffices
to find an upper and lower bounds for nT . An upper bound for nT
is given in [4] which is presented in the proposition below.

Proposition 4 ([4], Theorem 5). Assume that λ > max{1,D2}.
On event ε , for any horizon T ∈ N, we have

nT 6 1+114d2 (A
√

λ +σ)2

αr`(∆`+αr`)

[
log
(62d(A

√
λ +σ)√

δ (∆`+αr`)

)]2
.

Thus the only thing remaining to prove is a lower bound on
nT . To prove a lower bounds on nT , we use Proposition 5 from
[4] and Lemma 2.

Proposition 5 ([4], Lemma 4). For given k ∈ N, λ > 0, and any
sequence Y1,Y2, . . . ,Yk in Rd such that for all i : ‖Yi‖2 6 D, let
V0 = λ I and Vi = λ I +∑ j=1 YjY>i for 1 6 i≤ k. Then, we have

k

∑
i=1

min
(

1,‖Yi‖2
V−1

i−1

)
6 2d log

(
1+

kD2

λd

)
. (9)

Lemma 2. For any m ≥ 2 and c1,c2,c3 > 0, −c3m −

c1
√

m log(c2m)≥ 16c2
1

25c3

[
log(

2c1
√

c2e
c3

)
]2
.

Proof. Let g(m) = −c3m − c1
√

m log(c2m). Then, g′(m) =

−c3−
c1(2+ log(c2m))

2
√

m
and g”(m) =

c1 log(c2m)

4m
√

m
. Since c2 > 1,

g is a convex function over its domain [2,∞), and thus a global
optimum m? exists for g. By the first order condition, we get
g′(m?) = 0. This gives

2+ log(c2m?) =
−2c3

c1

√
m?. (10)

Thus g? = g(m?)= c3m?+2c1
√

m?. Using change of variables
z =

c3

2c1

√
m?, we get

g? =
4c2

1
c3

(z2 + z). (11)

Eq. (10) becomes

2+ log(
4c2c2

1

c2
3

)+2log(z) =−4z.

After taking exponential on both sides,

e−4z

z2 =
4c2

1c2e2

c2
3

.



Using ez > z2,

4c2
1c2e2

c2
3

=
e−4z

z2 >
e−4z

ez = e−5z.

Thus

z≥ −1
5

log(
4c2

1c2e2

c2
3

).

Substituting in Eq. (11), we get

g?≥4c2
1

c3
z2 ≥ 4c2

1
25c3

[
log(

4c2
1c2e2

c2
3

)
]2
=

16c2
1

25c3

[
log(

2c1
√

c2e
c3

)
]2
.

Theorem 1. Assume that λ > D2. On event ε , for any horizon
T ∈ N, the following holds

nT >
d2(A
√

λ +σ)2

αrh(∆h +αrh)

[
log
(10d(A

√
λ +σ)√

δ (∆h +αrh)

)]2
.

Proof. Let τ be the last round in which Algorithm IV.1 plays the
learner’s action, τ = max{1 6 t ≤ T |xt = x′t}.

min
θ∈Bτ

〈θ , ψ̄τ

x′τ
+ ∑

t∈Sτ−1

ψ̄
t
xt 〉+ ∑

t∈Sb
τ−1

r(bt ,ct)> (1−α)
τ

∑
t=1

r(bt ,ct),

α

τ

∑
t=1

r(bt ,ct) > ∑
t∈Sτ−1

r(bt ,ct)+ r(bτ ,cτ)− min
θ∈Bτ

〈θ , ψ̄τ

x′τ
+ ∑

t∈Sτ−1

ψ̄
t
xt 〉,

> ∑
t∈Sτ−1

(r(bt ,ct)−〈θ ?, ψ̄ t
xt 〉)+(r(bτ ,cτ)−〈θ ?, ψ̄τ

x′τ
〉)

+〈θ ?, ψ̄τ

x′τ
+∑
t∈Sτ−1

ψ̄
t
xt 〉− min

θ∈Bτ

〈θ , ψ̄τ

x′τ
+∑
t∈Sτ−1

ψ̄
t
xt 〉

> ∑
t∈Sτ−1

(−∆
t
bt
)−∆

τ
bτ
−min

θ∈Bτ

〈θ , ψ̄τ

x′τ
+∑
t∈Sτ−1

ψ̄
t
xt 〉

> ∑
t∈Sτ−1

(−∆h)−∆h−min
θ∈Bτ

〈θ , ψ̄τ

x′τ
+∑
t∈Sτ−1

ψ̄
t
xt 〉

= −(mτ−1+1)∆h−min
θ∈Bτ

〈θ , ψ̄τ

x′τ
+∑
t∈Sτ−1

ψ̄
t
xt 〉 (12)

> −(mτ−1+1)∆h−‖θ‖Vτ

∥∥∥∥∥ψ̄
τ

x′τ
+ ∑

t∈Sτ−1

ψ̄
t
xt

∥∥∥∥∥
V−1

τ

> −(mτ−1+1)∆h−βτ

∥∥∥∥∥ψ̄
τ

x′τ
+ ∑

t∈Sτ−1

ψ̄
t
xt

∥∥∥∥∥
V−1

τ

>−(mτ−1+1)∆h−βτ(
∥∥∥ψ̄

τ

x′τ

∥∥∥
V−1

τ

+∑
t∈Sτ−1

∥∥ψ̄
t
xt

∥∥
V−1

t
) (13)

From Eq. (12), we get

α

τ

∑
t=1

r(bt ,ct)>−(mτ−1 +1)∆h− (mτ−1 +1) (14)

We note that, βτ is non decreasing and is greater than 1. Hence
from Eqs. (13) and (14),

α

τ

∑
t=1

r(bt ,ct)>−(mτ−1 +1)∆h−βτ [min(
∥∥∥ψ̄

τ

x′τ

∥∥∥
V−1

τ

,1)

+∑
t∈Sτ−1

min(
∥∥ψ̄

t
xt

∥∥
V−1

t
,1)] (15)

In order to simplify the equation, we introduce Γ as

Γ :=
[

min(
∥∥∥ψ̄

τ

x′τ

∥∥∥2

V−1
τ

,1)+ ∑
t∈Sτ−1

min(
∥∥ψ̄

t
xt

∥∥2
V−1

t
,1)]
]
.

By Cauchy-Schwarz inequality and using Proposition 5, and Γ,
Eq. (15) can be written as

α

τ

∑
t=1

r(bt ,ct) > −(mτ−1 +1)∆h−βτ

√
(mτ−1 +1)Γ

> −(mτ−1+1)∆h−βτ

√
2(mτ−1+1)d log(1+

(mτ−1+1)D2

λd
)

= −(mτ−1+1)∆h−

√
2(mτ−1+1)d log(1+

(mτ−1+1)D2

λd
)

×
(√

λA+σ

√
d log(

1+(mτ−1 +1)D2/λ

δ
)
)

> −(mτ−1+1)∆h−
√

2(mτ−1+1)d log(1+
(mτ−1+1)

d
)

×
(√

λA+σ

√
d log(

1+(mτ−1 +1)
δ

)
)

(16)

> −(mτ−1+1)∆h−
(√

2d
√

mτ−1 +1(A
√

λ+σ)
)

× log(
2(mτ−1+1)

δ
) (17)

The inequality in Eq. (16) follows from D2 > λ and the inequality
in Eq. (17) holds since(√

λA+σ

√
d log(

1+(mτ−1 +1)
δ

)
)

≤
(

A
√

λ +σ

)√
d log(

2(mτ−1 +1)
δ

)

Eq. (17) can be rewritten as

α

τ

∑
t=1

rh>−(mτ−1+1)∆h−
(√

2d
√

mτ−1+1(A
√

λ +σ)
)

× log(
2(mτ−1+1)

δ
)

αnτ−1rh > −(mτ−1+1)(∆h +αrh)−
(√

2d
√

mτ−1+1
)

× (A
√

λ +σ) log(
2(mτ−1+1)

δ
) (18)

Eq. (18) follows after substituting α ∑
τ
t=1 rh = α(mτ−1 +nτ−1 +

1)rh. To prove a lower bound on the LHS of Eq. (18), we first
present a lower bound for the RHS of Eq. (18). Let m = (mτ−1 +

1), c1 =
√

2d(A
√

λ +σ),c2 =
2
δ
,c3 = (∆h+αrh). By Lemma 2,

αnτ−1rh >
d2(A
√

λ +σ)2

(∆h +αrh)

[
log
(10d(A

√
λ +σ)√

δ (∆h +αrh)

)]2

The result follows as nT > nτ = nτ−1.

We now present the regret bound on Algorithm IV.1 in Theo-
rem 2. Proof of Theorem 2 follows from Lemma 1, Proposition 4,
Theorem 1, and Proposition 3.

Theorem 2. With probability at least 1− δ , Algorithm IV.1
satisfies the performace constraint in Eq. (4) for all t ∈ N, and



(a) (b) (c)

Fig. 1: Plots for synthetic data. (a) Cumulative regret of the standard linear UCB algorithm (LUCB [9]) and conservative stochastic
bandit algorithm with context distribution (Algorithm IV.1) with α = 0.1,0.3,0.5,0.8, (b) Cumulative regret for three settings: (i) when
the learner observes the context and there are no safety constraints (LUCB [9]), (ii) when the learner observes the context and there are
safety constraints (conservative linear UCB, CLUCB [4]), and (iii) when the learner observes only the context distribution and there are
safety constraints (Algorithm IV.1) (c) Comparison of per step regret RT /T at T = 2000 for different values of α for (i), (ii), and (iii).

(a) (b) (c)

Fig. 2: Plots for maize yield data. (a) Cumulative regret of the standard linear UCB algorithm (LUCB [9]) and conservative stochastic
bandit algorithm with context distribution (Algorithm IV.1) with α = 0.2,0.4,0.6,0.9, (b) Cumulative regret for three settings: (i) when
the learner observes the context and there are no safety constraints (LUCB [9]), (ii) when the learner observes the context and there are
safety constraints (conservative linear UCB, CLUCB [4]), and (iii) when the learner observes only the context distribution and there are
safety constraints (Algorithm IV.1) (c) Comparison of per step regret RT /T at T = 1000 for different values of α for (i), (ii), and (iii).

satisfies the following regret bound

RT ≤ O
(

d log(
D

λδ
T )
√

T +
Kh∆h

αr`
+

K`

√
log(1/δ )√

αrh(∆h +αrh)

)
,

where Kh and K` are constants that depend only
on the parameters of the problem as Kh = 1 +

114d2 (A
√

λ +σ)2

∆`+αr`

[
log
(62d(A

√
λ +σ)√

δ (∆`+αr`)

)]2
and K` =

d(A
√

λ +σ)
[

log
(10d(A

√
λ +σ)√

δ (∆h +αrh)

)]
.

Proof. The proof follows from Lemma 1, proposition 3, propo-
sition 4, and Theorem 1.

VI. EXPERIMENTAL ANALYSIS

In this section, we present the experimental validation of our
approach on two data sets (i) synthetic data and (ii) real-world
maize data.

A. Synthetic Data: We considered a context set C and an ac-
tion set X with 5-dimensional contexts and actions, i.e., c ∈
R5 and x ∈ R5,. Further we set the reward function r(xi,ci) =
∑

5
i=1(xi − ci)

2. Thus the parameterized vector φ(x,c) is given
by φ() = [x2

1, . . . ,x
2
5,c

2
1, . . . ,c

2
5,x1c1, . . . ,x5c5] and the reward pa-

rameter θ ? = [1,1,1,1,1,1,1,1,1,1,−2,−2,−2,−2,−2]. The
action set consists of 20 actions that we sample from a standard
Gaussian distribution. At each round t ∈ T , we sample the context
ct from a multi-variate normal distribution and set the context
distribution as µt = N (ct , I5). The observation noise ηt is set
as Gaussian with zero mean and standard deviation 0.1 and the
mean reward of the baseline policy at any time is taken to be the
reward associated with the 10th best action.

B. Maize Yield Data: We use a maize yield data set acquired
over four years by the maize Genomes to Fields (G2F) initiative
[23], a multi-institutional effort in North America over 68 unique
locations. The data set includes yields, planting dates, flowering
times, and harvest dates, as well as hourly weather data from



in-field weather stations, such as temperature, humidity, solar
radiation, rainfall, and soil wind speed, as well as soil character-
istics such as soil texture, organic matter, texture, and nitrogen,
phosphorous, potassium, sulfur, and sodium levels (in parts per
million). There are 2158 yield measurements (rewards) for 24
crops (action set) collected from 22 different locations in this
data set. The weather data of the whole growing season was
summarized by crop growth stages as in [24]. These are average
daily solar radiation [MJ/m2], average daily minimum temper-
ature below 0◦C in absolute values [◦C] as a measure of frost
impacts, average daily mean temperature [◦C] as a measure of
temperature determining plant growth, average daily maximum
temperature above 35 C [◦C] as a measure of heat stress, and
average photoperiod.

We first constructed a data set D = {(ci,xi,yi)}, where for
each data point i = 1,2, . . . ,2158, the context ci ∈ R28 is a
28−dimensional vector that includes 6-dimensional weather and
soil data information (% of sand, % of silt, % of clay in the
soil, daily average temperature, radiation, and photosynthesis)
and a 22−dimensional one-hot encoding that captures the field
ID, and xi,yi are the seed/crop identifier, yield, respectively.
We first fit a bilinear model [25] such that yi ≈ c>i WVxi , where
Vxi ∈ R10 is the feature vector for crop type xi [3]. Our data
set consists of 24 varieties of crops and hence there are 24
feature vectors, V1,V2, . . . ,V24. The bilinear model captures the
correlation between site features c>i W and Vxi for each data point
and serves as the interactive setting that provides the rewards
(yield) for our bandit setting.

We fitted a bilinear model on the historical maize data, col-
lected through the G2F initiative [23], via stochastic gradient
descent using the loss function

L(V,W ) =
n

∑
i=1

(yi− cT
i WVxi)

2 +λv||Vxi ||
2 +λw||W ||2,

where λv and λw denotes the regularization terms. Training this
model for 300 iterations resulted in a mean square error loss of
0.002 using a learning rate of 0.015, λv = λw = 0.001 and a latent
dimension of 10, i.e., Vxi ∈ R10 for all i. The observation noise ηt
is set as Gaussian with zero mean and standard deviation 0.1 and
the mean reward of the baseline policy at any time is taken to be
the reward associated with the 16th best action.

C. Experiments and Analysis: We performed two experiments
on the synthetic and real data and all the points are averaged
over 100 independent trials. In the first experiment we varied the
value of the constraint parameter α and we plot the cumulative
regretRt at each round t. Figure 1a shows the comparison of the
cumulative regret of the standard linear UCB algorithm (LUCB)
in [9], when contexts are known and there are no constraints,
and the conservative stochastic bandit with context distribution
and α = 0.1,0.3,0.5, and 0.8 for the synthetic data. Figure 2a
shows the comparison of the cumulative regret of the LUCB
algorithm in [9] and the conservative stochastic bandit with
context distribution and α = 0.2,0.4,0.6, and 0.9 for the maize
yield data data. From Figures 1a and 2a we observe that as the
value of α increases the cumulative regret decreases which is
expected as larger value of α means weaker constraint.

In the second experiment, we implemented three cases of our
bandit setting: (i) when the learner observes the context and there
are no safety/performance constraints (LUCB [9]), (ii) when
the learner observes the context and there are safety constraints
(conservative linear UCB, CLUCB [4]), and (iii) when the learner

observes only the context distribution and there are safety con-
straints (conservative stochastic UCB algorithm with context
distribution, Algorithm IV.1). Figures 1b and 2b presents the
plots for the cumulative regret for the three settings for synthetic
data and maize yield data, respectively. We note that, in (i) the
decisions are based on the observed context, in (ii) the decisions
are based on the observed context and the safety constraint and
in (iii) the decisions are based on the context distribution and the
safety constraint. From the plots we notice that (i) outperforms
(ii) and (ii) outperforms (iii) which is expected. We also present
the per step cumulative regret RT/T for the synthetic data with
T = 2000 and fro the maize yield data with T = 1000 while
varying the value of α . From Figures 1c and 2c we notice that
the gap between the standard linear UCB algorithm and the
conservative stochastic bandit algorithm decreases as the α value
increases, which is expected as larger α means weaker constraint.

VII. CONCLUSION

In this paper, we presented a conservative stochastic contextual
bandit framework for sequential decision making when an adver-
sary chooses a distribution on the set of possible contexts and
the learner is subject to certain safety/performance constraints.
Our bandit formulation is conservative in the sense that we
incorporate constraints on the learned policy such that the learned
policy need to satisfy certain baseline performance criteria while
maximizing the reward. Furthermore, our bandit formulation is
stochastic in the sense that the contexts are not observable, rather
a distribution of the contexts are known. We proposed a conser-
vative linear UCB algorithm for stochastic bandits with context
distribution. We proved an upper bound on the regret of the
algorithm and showed that it can be decomposed into three terms:
(i) an upper bound for the regret of the standard linear UCB
algorithm, (ii) a constant term (independent of time horizon) that
accounts for the loss of being conservative in order to satisfy
the safety constraint, and (ii) a constant term (independent of
time horizon) that accounts for the loss of the contexts being
unknown and only the distrbution being known. We validated the
performance of our approach through extensive simulations on
synthetic data and on real-world maize data collected through the
Genomes to Fields (G2F) initiative.
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