

TUCSON, AZ FEBRUARY 24-27

Semantic Segmentation of Sorghum Using Hyperspectral Data Identifies Genetic Associations

> Chenyong Miao February 26, 2020

# When I talk about this topic, people ask

- What is the semantic segmentation
- What do you use it for



# Introduction

- Whole plant segmentation in RGB images
- The limitations of using RBG images
- Semantic segmentation = pixel classification to plant organs







#### Hyperspectral Signatures of Sorghum Organs







#### Hyperspectral Signatures of Sorghum Organs



### Performance of Classification Algorithms

| Methods | Background | Leaf  | Stalk | Panicle | Average |
|---------|------------|-------|-------|---------|---------|
| LDA     | 1.000      | 0.969 | 0.946 | 0.974   | 0.972   |
| PLS-DA  | 1.000      | 0.973 | 0.911 | 0.976   | 0.965   |
| ANN     | 0.997      | 0.974 | 0.923 | 0.958   | 0.963   |
| MLR     | 0.983      | 0.970 | 0.934 | 0.959   | 0.962   |
| SVM     | 0.999      | 0.978 | 0.920 | 0.948   | 0.961   |
| RF      | 0.999      | 0.964 | 0.830 | 0.931   | 0.931   |
| LASSO   | 1.000      | 0.962 | 0.754 | 0.956   | 0.918   |
| QDA     | 0.987      | 0.986 | 0.657 | 0.865   | 0.874   |

LDA: linear discriminant analysis; MLR: multinomial logistic regression; ANN: artificial neural network; SVM: support vector machine; PLS-DA: partial least squares discriminant analysis; RF: random forest; QDA: quadratic discriminant analysis; LASSO: least absolute shrinkage and selection operator.



# Whole image prediction using LDA



#### Quantitative Genetics of Semantic Segmentation Traits

- Hyperspectral images for 300 lines in SAP were collected
- A wide range of traits were measured
- A SNP dataset for SAP



#### Quantitative Genetics of Semantic Segmentation Traits

Height to the tallest point of plant



#### Quantitative Genetics of Semantic Segmentation Traits

• GWAS on panicle size in SAP



TUCSON, AZ FEBRUARY 24-27

Miao et al, plant phenomics, doi: 10.34133/2020/4216373

# We can do more

sorghum lines over time













Sorghum Lines across whole population







# Apply semantic segmentation in plant dynamic traits



Miao et al, bioRxiv, doi: 10.1101/2020.02.16.951467



# Mapping plant growth curves using sequential GWAS



#### Using FPCA to extract growth patterns (statistics)



#### Using FPCA to extract growth patterns (biology)



Miao et al, bioRxiv, doi: 10.1101/2020.02.16.951467



# Map growth patterns using GWAS





- 1. Organ level segmentation provides opportunities to quantify a wide range of plant traits
- 2. The results from semantic segmentation can be used to map genes controlling the variations
- 3. Time-series data can increase the power and accuracy of GWAS analyses



# Thank You

#### AGRICULTURAL RESEARCH DIVISION



UNIVERSITY OF NEBRASKA-LINCOLN

HOLLAND COMPUTING CENTER

Biology Collaborator: Sanzhen Liu Patrick S. Schnable Jinliang Yang

Statistics Collaborator: Yuhang Xu Zheng Xu

Computer Science Collaborator: Alejandro Pages





