

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN Division of Plant Breeding Methodology Department of Crop Sciences

Understanding maize phenotypic traits variability using a machine learning method that incorporates genomic and environmental covariates

Cathy Jubin University of Göttingen, CiBreed

> Genomes to Fields Workshop Phenome2020 01/24/2020

Poster 209

Branch of artificial intelligence concerned with the development of algorithms able to recognize patterns, or to predict categorical/quantitative targets on new data, after learning from examples.

Two main learning problems categories:

→ Classification problems
→ <u>Regression problems</u>

Langs, G., et al. (2018)

AT Department of Crop Sciences Division of Plant Breeding Methodology

Why applying Machine Learning on multi-environment trials datasets?

AT Department of Crop Sciences
Division of Plant Breeding Methodology

Why applying Machine Learning on multi-environment trials datasets?

GxE, cross-over interactions

Various statistical models accounting for GxE interactions (Heslot et al. 2014, Jarquin et al. 2014)

Index of environmental values

But often more complexity:

- Non-linear responses of genotypes to environmental stresses
- Variability among genotypes responses (GxE)

Index of environmental values

GEORG-AUGUST-UNIVERSITÄT Department of Crop Sciences GÖTTINGEN Division of Plant Breeding Methodology

Why applying Machine Learning on multi-environment trials datasets?

Machine Learning \rightarrow model flexibility to link phenotypes to genomic and environmental features

 \rightarrow Data-driven predictions...

Khaki and Wang (2019)

... at the cost of biological interpretability (black-box models) ?

IAI Department of Crop Sciences Division of Plant Breeding Methodology

Proposed approach to integrate genomic and environmental covariates in a pooled dataset

• First evaluation of the most determinant factors affecting maize grain yield and plant height with one machine learning algorithm

• First evaluation of the model performance (on the whole dataset) with the input features

Data preparation

Hybrid phenotypic observations (2014-2018) & hybrid genotype data

- About 15,500 phenotypic observations (5 years, 26 counties) remaining after quality control, and matching with genotype data
- Plots(trials removed (disease, missing information)
- GBS genotypic data from inbred lines used
 - > 900,000 SNPs initially
 - Filtering: ~ 255,000 SNPs on resulting synthetic hybrid genotype matrix

Poster 209

GEORG-AUGUST-UNIVERSITÄT De GÖTTINGEN Div

Department of Crop Sciences Division of Plant Breeding Methodology

Processing of weather data (2014-2018)

Step 1: obtain a daily weather dataset for each station Missing values often need to be imputed for ML algorithms (R Package 'nasapower', Sparks 2018)

Step 2: add irrigation data when available

ranspiration (ETo) o standard FAO-56 definition $h_{i} = \frac{1}{1000} + \frac{1}{1000} +$

Poster 209

Step 3: Feature engineering: creating new input predictors from existing ones
→ Low-level sensory data (e.g. relative humidity) might be more meaningful after transformation

Environmental covariates derived for each hybrid per estimated growth stage

Hybrid-dependent environmental covariates: 3 growth stages estimated using recorded flowering date and sowing date (non-overlapping)

Weather information restricted to the growing season (pre-sowing information absent)

Picture source: Cathy Jubin, Barış Alaca

FD1: 5 days before 50% recorded silking date (reference basis of a 130 days growth period) FD2: 10 days after 50% recorded silking date (reference basis of a 130 days growth period)

GEORG-AUGUST-UNIVERSITÄT Göttingen

Department of Crop Sciences Division of Plant Breeding Methodology

Environmental covariates derived per hybrid per growth stage

Acronym	General description	
Р	Accumulated precipitation (mm)	
FreqP5	Frequency of days with more than 5 mm precipitation	
MeanT	Average of daily mean temperature (°C)	
MinT	Average of minimum daily temperature (°C)	
MaxT	Average of maximum daily temperature (°C)	
GDD	Cumulative growing degree days Base 10 (°C)	
FreqMaxT30	Frequency of days with maximum temperature above 30°C	
FreqMaxT35	Frequency of days with maximum temperature above 35°C	
EvTot	Reference evapotranspiration ET_0 according to Penman-Monteith (total amount of evaporated water from the hypothetical grass reference surface. (mm)	
RatioP.ET0	Ratio of total rainfall to total Penman-Monteith reference evapotranspiration (P/ET_0) in the growing stage - Aridity index.	
Photothermal.Time	Sum of [daily hours of photoperiod (daylength) * daily GDD]	
WindS	Average wind speed at 2 meters (m/s)	
Sdrad	Accumulated daily solar radiation (MJ m ⁻² day ⁻¹)	

Growing season length included

- → Characterize each environment more accurately
- → Account for the plant growth stage

Poster 209

SITAT Department of Crop Sciences Division of Plant Breeding Methodology

Correlations among computed environmental covariates

Pearson's coefficients of correlation within and across environmental covariates derived per growth stage.

Covariates derived from temperature information correlated

→ Collinearity: issue for predictions with machine learning ?

Department of Crop Sciences Division of Plant Breeding Methodology

AT Department of Crop Sciences Division of Plant Breeding Methodology

Machine learning to assess determinant predictors (preliminary results)

Handling predictors before implementing prediction scenarios

Overfitting problem: large number of predictors, with high collinearity

Feature extraction on hybrid marker matrix

Singular Value Decomposition of the standardized hybrid genotype matrix (same approach as Ehret *et al.* 2014):
X = UDV'

Feature selection (FS) for environmental predictors

Assessment of variable importance on the whole dataset

Cumulative variability explained by each column

→ Top 800 principal component scores used as input features

GEORG-AUGUST-UNIVERSITÄT Göttingen

Department of Crop Sciences Division of Plant Breeding Methodology

Gradient Boosted Trees to evaluate variable importance

Department of Crop Sciences Division of Plant Breeding Methodology

Quantification of the variable importance (VI) – Grain yield

Top 25 variables shown for model including all covariates. Suffixes refer to: V: vegetative stage; F: flowering stage; G: grain fill stage

UD: principal component scores

Based on gain (improvement in accuracy brought by a variable to the branches it is on)

1000 boosting iterations with xgbTree method, with 5-fold cross-validation on the whole dataset

GÖTTINGEN

Number of predictors: 840 Root mean square error: 23.31 R²: 0.69 Mean absolute error: 17.72

Poster 209

GEORG-AUGUST-UNIVERSITÄT Department of Crop Sciences **Division of Plant Breeding Methodology**

Quantification of the variable importance (VI) – Plant height

Top 25 variables shown for model including all covariates (grain fill stage excluded)

Suffixes refer to: V: vegetative stage; F: flowering stage; G: grain fill stage

UD: principal component scores

Number of predictors: 827 Root mean square error: 13.16 R²: 0.881 Mean absolute error: 9.85

GÖTTINGEN

Department of Crop Sciences Division of Plant Breeding Methodology

Model performance obtained with different sets of input variables

Trait	Input variables	Root mean square error	R ²	Mean absolute error
Grain yield (1)	ECs, PCs	23.31	0.692	17.72
Grain yield (2)	Y, L, PCs	26.54	0.603	19.90
Grain yield (3)	ECs	27.32	0.578	20.90
Grain yield (4)	PCs	43.30	0.0465	34.42
Plant height (5)	ECs, PCs	13.16	0.881	9.85
Plant height (6)	Y, L, PCs	13.66	0.872	10.20
Plant height (7)	ECs	17.02	0.802	13.03
Plant height (8)	PCs	37.59	0.091	27.84

EC: all environmental covariates ; L: location (indicated as county) ; Y: year PCs: principal component scores based on SNPs matrix Model assessed with 5-fold cross-validation

Shows the marginal effect a feature has on the predicted outcome

Negative influence of temperature on the output variable

Department of Crop Sciences

Division of Plant Breeding Methodology

21

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

Center for Integrated Breeding Research

Other predictors relationships with the target variable

Weather covariates standardized

Outlook: What type of plant breeding scenarios to predict ?

Predicting new hybrids (never assessed in any other environment): T0,T1 and T2 hybrids in a new year and in a new location (county).

	Environments						
		Location G, Location A-F,					
L	ocation A-F, Y=2014:2016	Y=2017	Y=2018				
Identical hybrids		Test set:					
from test set	Training set	all hybrids	Training set				
Parental lines		tested in					
evaluated in other crosses		G-2017					
+ all other							
hybrids							

Identical hybrids present both in training and testing set removed from training set.

Discussion

- Environmental covariates restricted here to weather information (soil, agronomic practices, pests or pre-sowing information not included)
- Quality of weather-based variables (weather station, imputation of missing values)
- **Precision of definition of growth stages**
- Model performance dependent on hyperparameter optimization and on the type of algorithm
- Pooling all data together: advantageous or not for prediction of specific environments?

- Here, climatic factors alone explained more of the phenotypic trait variability than the principal component scores derived from SNPs data
- Weather-based covariates related to temperature and heat stresses were the most critical for grain yield determination
- Machine learning algorithms can help us understand the relationships (linear and nonlinear) between predictors and the target variables

Acknowledgements

PhD supervisors:

Timothy M. Beissinger

Henner Simianer

Medhat Mahmoud Barış Alaca **Reimund Rötter** Patrick Thorwarth Jan-Christof Richter **Gregory Mahone**

Poster 209

Wolfgang Link

Stefanie Griebel

We thank the G2F Consortium for making data publicly available, sharing them among collaborators and for their help with this study.

KWS

We are grateful to KWS SAAT SE & Co. KGaA for financial support of the PhD thesis.

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN Division of Plant Breeding Methodology Department of Crop Sciences

Thank you for your attention !

