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Machine Learning: a data-driven science

Branch of artificial intelligence concerned with the development of algorithms able to recognize
patterns, or to predict categorical/quantitative targets on new data, after learning from examples.

Two main learning problems categories:

R L EL : -=~<* - Classification problems
Supervised e e :
P ek o e e §..mo—e —» Regression problems
Unsupervised . oo
o &%
C:%g:aooo‘w"o

Training data Resulting model Applied to new input

Langs, G., et al. (2018)
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Why applying Machine Learning on multi-environment trials datasets?

Environment Various data types

Weather variables High dimensional datasets
Soil characteristics

More and more field data Agronomic practices Genome and
generated... how to use it ? Biological environment multi-omics data

, Typical’

breeding data: Phenotype
flowering time Weather station

+ drones,
soil moisture
sensors,
high-
throughput
phenotyping
platforms
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Why applying Machine Learning on multi-environment trials datasets?

GXE, cross-over interactions But often more complexity:

Various statistical models accounting for GXE interactions * Non-linear responses of genotypes to

(Heslot et al. 2014, Jarquin et al. 2014) environmental stresses

Variety 1 « Variability among genotypes responses (GxE)

memm  Variety 2
Variety 1
memm  Variety 2

Phenotype
Phenotype

Index of environmental values Index of environmental values
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Why applying Machine Learning on multi-environment trials datasets?

Machine Learning - model flexibility
to link phenotypes to genomic and environmental features

- Data-driven predictions...
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Khaki and Wang (2019)

... at the cost of biological interpretability (black-box models) ?
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Today’s presentation

* Proposed approach to integrate genomic and environmental covariates in a
pooled dataset

* First evaluation of the most determinant factors affecting maize grain yield
and plant height with one machine learning algorithm

 First evaluation of the model performance (on the whole dataset) with the
Input features
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Data preparation
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Hybrid phenotypic observations (2014-2018) & hybrid genotype data

About 15,500 phenotypic observations (5
years, 26 counties) remaining after quality

control, and matching with genotype data

Plots(trials removed (disease, missing - B . Rncar
information) & B
GBS genotypic data from inbred lines L
used ) I
« >900,000 SNPs initially Difes
« Filtering: ~ 255,000 SNPs on ‘
resulting synthetic hybrid genotype San Antonio

matrix
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Leaflet | © OpenStreetMap contributors, CC-BY-SA
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Processing of weather data (2014-2018)

Step 1: obtain a daily weather dataset for each station Weather
Missing values often need to be imputed for ML algorithms station in
(R Package ‘nasapower’, Sparks 2018) Goettingen

Step 2: add irrigation data when available

Step 3: Feature engineering: creating new input predictors from existing ones
- Low-level sensory data (e.g. relative humidity) might be more meaningful after transformation

ref.evapotranspiration

mm
location
o 3 . * DEH1
75 o o8’o ° * GAH2
. oo
o IAHT
o IAH4
o INH1
o MIH1
*  MNHT
o MOH1
o NCH1
s OHH1
* ONH1
ONH2
* SCH1
. WIH1
0.0 = . WIH2
100 150 200 250 300

Daily reference evapotranspiration (ETo)
calculated according to standard FAO-56
Penman and Monteith definition

25

Day of year
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Environmental covariates derived for each hybrid per estimated growth stage

Hybrid-dependent environmental covariates: 3 growth stages estimated
using recorded flowering date and sowing date (non-overlapping)

Weather information

restricted to the growing

: Flowering and Grain fill growth
Vegetative stage (V): D :
1 week after sowing pollination growth stage (G):

stage (F): From FD2 to ~ 55
Sz g FRL From FD1 to FD2 days after

Picture source: Cathy Jubin, Barig Alaca
FD1: 5 days before 50% recorded silking date (reference basis of a 130 days growth period)
FD2: 10 days after 50% recorded silking date (reference basis of a 130 days growth period)

season (pre-sowing
information absent)

i
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Environmental covariates derived per hybrid per growth stage

Acronym General description _
P Accumulated precipitation (mm) Vegetative Stage
FreqP5 Frequency of days with more than 5 mm precipitation FIOV.\/egr.II? Stage
MeanT Average of daily mean temperature (°C) Grain Filling Stage
MinT Average of minimum daily temperature (°C)
MaxT Average of maximum daily temperature (°C)
GDD Cumulative growing degree days Base 10 (°C)
FreqMaxT30 Frequency of days with maximum temperature above 30°C Growing season length included
FreqMaxT35 Frequency of days with maximum temperature above 35°C

Reference evapotranspiration ET, according to Penman-Monteith - Characterize each
EvTot (total amount of evaporated water from the hypothetical grass environment more

reference surface. (mm) accurately

Account for the plant
growth stage

Ratio of total rainfall to total Penman-Monteith reference N

SELRETND evapotranspiration (P/ET,) in the growing stage - Aridity index.

Sum of [daily hours of photoperiod (daylength) * daily GDD]
Photothermal.Time

WindS Average wind speed at 2 meters (m/s)
Sdrad Accumulated daily solar radiation (MJ m-2 day)
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Correlations among computed environmental covariates
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Input features for Machine Learning- based regression

Hybrid genotype matrix

2

Phenotypic observations
(grain yield, plant height)

Acronym  General description

R Machine Learning algorithm

Frequency of days with more than 5 mm

FreqP5 A

precipitation
MeanT Average of daily mean temperature (°C)
MinT Average of minimum daily temperature (°C)
MaxT Average of maximum daily temperature (°C)
GDD Cumulative growing degree days Base 10 (°C)
FreqMaxT3 Frequency of days with maximum temperature
0 above 30°C
FreqMaxT3 Frequency of days with maximum temperature
5 above 35°C

Reference evapotranspiration ET, according to
EvTot Penman-Monteith (total amount of evaporated

water from the hypothetical grass reference

surface. (mm)

Ratio of total rainfall to total Penman-Monteith
RatioP.ETO reference evapotranspiration (P/ET,) in the

growing stage - Aridity index.

Sum of [daily hours of photoperiod (daylength) *
Phototherm daily GDD]

al.Time
WindS Average wind speed at 2 meters (m/s)
Sdrad Accumulated daily solar radiation (MJ m2 day)
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Machine learning to assess
determinant predictors
(preliminary results)
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Handling predictors before implementing prediction scenarios

Overfitting problem: large number of predictors, with high collinearity

'4

‘large p, small n’
Feature extraction on hybrid marker matrix Feature selection (FS) for environmental
predictors

« Singular Value Decomposition of the standardized hybrid
genotype matrix (same approach as Ehret et al. 2014): « Assessment of variable importance on the

X =UDV’ whole dataset

Cumulative variability
explained by each column

- - Top 800 principal component
scores used as input features
[ [ [

[ |
0 T 500 1500

800 first scores accounting for
94.5% of the variability

0 40 80
[ |
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Gradient Boosted Trees to evaluate variable importance

Error , —> Difference from Random Forest: all trees are built independently

- Popular in biomedical studies #ronters

in Genetics doi: 10.3389/1gene.2010.00735

Chock for
Updates:

;. E Identification of Cancer-Related
Long Non-Coding RNAs Using
-+ XGBoost With High Accuracy

Xuan Zhang™#, Tianjun Lif, Jun Wang*', Jing Li’, Long Chen3* and Changning Liu™
‘CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Batanical Gardlen, Chinese
. Academy of Sciences, Kunming, China, 2 University of Chinese Academy of Sciences, Beiing, China, ? Department of

Computer and Information Science, Facully of Science and Technology, Universify of Macaw, Macau, China, * Institute of

Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
Dinh et al. BMC Medical Infarmatics and Decision Making (2019) 19:211 H :
& .% hutps://doi.org/s12911-019-0918-5 BMC Medlcal[l)nfo_r_matl{nts I?,nd
ecision viaking

ﬂ I RESEARCH ARTICLE Open Access

A data-driven approach to predicting
diabetes and cardiovascular disease with
machine learning

An Dinh'?, Stacey Miertschin®®, Amber Young® and Somya D. Mohanty**

Ghack for
updates

Number of boosting
iterations
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Quantification of the variable importance (VI) — Grain yield

MeanT.F .

Top 25 variables shown for model PV
Wind.F .

including all covariates. MeanTV .
Suffixes refer to: V: vegetative Wind.V
stage ; F: flowering stage ; G : FreqP5.V

L ]

L]

. . length.growing.season .
grain fill stage MaxT V .
MinT.F s

MinT.V

UD1

GDD.V

Sdrad .V

Sdrad.G

MinT.G

Wind.G

EvTot.G

MaxT.G

FreqP5.G

o . FregMaxT35.V
Based on gain (improvement in accuracy brought by a EvTot V
variable to the branches it is on) RatioP ET0 F
P.G

1000 boosting iterations with xgbTree method, with 5-fold GDD.F
cross-validation on the whole dataset uD16

UD: principal component scores

Number of predictors: 840
Root mean square error: 23.31
R2: 0.69

Mean absolute error: 17.72

1 T T T
0.00 0.05 0.10 0.15

Importance
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Quantification of the variable importance (VI) — Plant height

Photothermaltime.V Top 25 variables shown for model
MeanTV . . . . .
MinTV . including all covariates (grain fill
length.growing.season Stage eXCIUded)
EvTotF
Wind.F - C\/- -
iy Suffixes refer to: V: vegetative
FregMaxT30.V stage ; F: flowering stage ; G :
MinT.F i i
rain fill stage
Wind.V 9 9
uUD3 o
FreqMaxT35.V UD: principal component scores
MaxT.V .
PF .
D4 .
RatioP ETO.V .
Sdrad.V .
FregP5V .
EviotVi| @ Number of predictors: 827
MeanT.F - ]
Phototharmaltima.F | e Root mean square error: 13.16
SdradF | e R2: 0.881
FreqMaxT35F | Mean absolute error: 9.85
GODV .
uD2 | e
T T
0.05 0.10
Importance
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Model performance obtained with different sets of input variables

Input Root mean Mean absolute
variables square error error

Grain yield (1) ECs, PCs 23.31 0.692 17.72

Grain yield (2) Y, L, PCs 26.54 0.603 19.90

Grain yield (3) ECs 27.32 0.578 20.90

Grain yield (4) PCs 43.30 0.0465 34.42

Plant height (5) ECs, PCs 13.16 0.881 9.85

Plant height (6) Y, L, PCs 13.66 0.872 10.20

Plant height (7) ECs 17.02 0.802 13.03

Plant height (8) PCs 37.59 0.091 27.84

EC: all environmental covariates ; L: location (indicated as county) ; Y: year
PCs: principal component scores based on SNPs matrix
Model assessed with 5-fold cross-validation
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Partial dependence plots: partial relationships of the predictors to grain yield

Shows the marginal effect a feature has
on the predicted outcome 155 -

150 — —

145 — -

Yield

140 —f —

Negative influence of temperature
on the output variable . N — i

[ | I I
T
-2 ] 2 4

MeanT.F

=
=
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Other predictors relationships with the target variable

Yield
Yield

111 - 1 11 -
T T T T T T T T

| 111
1 T T T

FregMaxT35.G FreqP5.V MeanT.V

Weather covariates standardized
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Outlook: What type of plant breeding scenarios to predict ?

Predicting new hybrids (never assessed in any other environment): TO,T1 and T2 hybrids in a
new year and in a new location (county).
Environments
Location G, Location A-F,
Location A-F, Y=2014:2016 Y=2017  Y=2018

Identical hybrids Test set:

from test set Training set all - Training set
hybrids

Parental lines tested in

evaluated in G-2017

other crosses

+ all other

hybrids

Identical hybrids present both in training and testing set removed from training set.

GOTTINGEN _ _
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Discussion

* Environmental covariates restricted here to weather information (soil, agronomic
practices, pests or pre-sowing information not included)

* Quality of weather-based variables (weather station, imputation of missing values)
* Precision of definition of growth stages

 Model performance dependent on hyperparameter optimization and on the type of
algorithm

« Pooling all data together: advantageous or not for prediction of specific environments ?
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Take-home messages

« Here, climatic factors alone explained more of the phenotypic trait variability than the
principal component scores derived from SNPs data

 Weather-based covariates related to temperature and heat stresses were the most critical
for grain yield determination

 Machine learning algorithms can help us understand the relationships (linear and non-
linear) between predictors and the target variables
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