

Pioneering new frontiers.

"Plugin"-based architecture of software to predict corn phenotypes

Francisco Munoz-Arriola^{1,2} Diego Jarquin³ Hallie Hohbein⁴ Parisa Sarzaeim⁴ Joseph Carter⁴ David Recic⁴ Zoe Trautman⁴ Anna Zhang⁴ Byrav Ramamurthy⁴

¹Department of Biological Systems Engineering,
² School of Natural Resources
³Department of Agronomy and Horticulture
⁴Department of Computer Sciences and Engineering

2020 G2F Collaborator's Meeting, Phenome Meeting

Acknowledgements

<u>USDA</u>

This project was supported by the USDA National Institute of Food and Agriculture, **Plant Health and Production and Plant Products: Plant Breeding for Agricultural Production, A1211). Accession No.1015252**

Some ideas are associated with the USDA National Institute of Food and Agriculture, Agriculture and Food Research Initiative HATCH project NEB-21-166 Accession No. No.1009760

Genomes to Fields initiative

UNL's Department of Computer Sciences and Engineering Senior Design

Motivation

• Consistent increase of water use efficiency, farmers revenues and yields

• Drops in water use efficiency, farmers revenues and yields after the occurrence of floods and droughts

ND

SD

Maize Yield Reduction (2010 - 2012)

Ref: USDA NASS

Outline

- Framework
- G2F
- Software Architecture
 - Preprocessing
 - Option Selection
 - Processing
 - Postprocessing
- Software Demo
- Complexities
- Conclusion
- Future Work

50

45

40

30

25

50

45

40

30

25

-120

-110

-100

Incorporation of Environmental Information to Improve Phenotypic Predictability in Maize G2F-GxE Hybrid Project

G2F Experiments Distribution Map of experiments in 2014 Map of experiments in 2015 50 45 40 35 30 25 -120 -110 -100 -70 -120 -110 -100-70 -90 -80 -00 Map of experiments in 2016 Map of experiments in 2017 50 45 40 35 30 25

-70

-120

-110

-100

-70

Pre-processing

 Integration of various data sources
 Correction the data

3. Synthesis the data

Data consolidation

Temperature

Dew Point

Relative Humidity

- Solar Radiation

Rainfall

Mind Speed

Wind Direction

Data-driven analytics

Performance Metric	Mean	Min	Мах	SD
R ²	0.88	0.61	0.96	0.10
Bias	-0.52	-1.15	0.13	0.37
RMSE	1.67	1.13	3.00	0.55
NSE	0.87	0.80	0.98	0.05

Performance Metrics

- R²
- Bias
- RMSE
- NSE

Complete Empty Missing

Pre-processing

Data separation for each experiment

Name	Date modified
🗐 2014DEH1	1/29/2020 11:29 AM
😰 2014DEI1	1/29/2020 11:29 AM
😰 2014GAH1	1/29/2020 11:29 AM
2014GAI2	1/29/2020 11:29 AM
2014IAH1 IAI1	1/29/2020 11:29 AM
2014IAH2	1/29/2020 11:29 AM
2014IAH3	1/29/2020 11:29 AM
2014IAH4	1/29/2020 11:29 AM
2014IAI2	1/29/2020 11:29 AM
2014IAI3	1/29/2020 11:29 AM
🗐 2014ILH1 ILI1	1/29/2020 11:29 AM
2014INH1 INI1	1/29/2020 11:29 AM
2014MNH1	1/29/2020 11:29 AM
2014MNI2	1/29/2020 11:29 AM
2014MOH1 MOI1	1/29/2020 11:29 AM
2014MOH2 MOI2 MOI3	1/29/2020 11:29 AM
2014NCH1	1/29/2020 11:29 AM

Correction of the Experiment names and Check the sequence of days

Name	Date modified
2014DEH1	1/29/2020 11:29 AM
🔁 2014DEI1	1/29/2020 11:29 AM
😰 2014GAH1	1/29/2020 11:29 AM
2014GAI2	1/29/2020 11:29 AM
2014IAH1	1/29/2020 11:29 AM
2014IAH2	1/29/2020 11:29 AM
2014IAH3	1/29/2020 11:29 AM
2014IAH4	1/29/2020 11:29 AM
🖬 2014IAI1	1/29/2020 11:29 AM
2014IAI2	1/29/2020 11:29 AM
2014IAI3	1/29/2020 11:29 AM
🖬 2014ILH1	1/29/2020 11:29 AM
🗐 2014ILI1	1/29/2020 11:29 AM
🖬 2014INH1	1/29/2020 11:29 AM
🖬 2014INI1	1/29/2020 11:29 AM
🖬 2014MNH1	1/29/2020 11:29 AM
2014MNI2	1/29/2020 11:29 AM

Charts for experiments analysis

is PC > Data (E:) > G2F data preprocessing > Output > 05_Experiment_Statistics

Pre-processing

Separating data for each variable

Name	Date modified
🔁 D2014DEH1	1/29/2020 11:31 AM
D2014DEI1	1/29/2020 11:31 AM
🔁 D2014GAH1	1/29/2020 11:31 AM
🖬 D2014GAI2	1/29/2020 11:31 AM
🔯 D2014IAH1	1/29/2020 11:31 AM
国 D2014IAH2	1/29/2020 11:31 AM
国 D2014IAH3	1/29/2020 11:31 AM
🗐 D2014IAH4	1/29/2020 11:31 AM
🖬 D2014IAI1	1/29/2020 11:31 AM
2014IAI2	1/29/2020 11:31 AM
2014IAI3	1/29/2020 11:31 AM
2014ILH1	1/29/2020 11:31 AM
D2014ILI1	1/29/2020 11:31 AM
2014INH1	1/29/2020 11:31 AM
2014INI1	1/29/2020 11:31 AM
D2014MNH1	1/29/2020 11:31 AM
2014MNI2	1/29/2020 11:31 AM
D2014MOH1	1/29/2020 11:31 AM
D2014MOH2	1/29/2020 11:31 AM
D2014MOI1	1/29/2020 11:31 AM
D2014MOI2	1/29/2020 11:31 AM
D2014MOI3	1/29/2020 11:31 AM
🔯 D2014NCH1	1/29/2020 11:31 AM

Providing PDFs for each

variable

Providing charts to analyze data availability for each variable

NSRDB NWS

260

280

Performance Metrics

Selection

		Tested Genotypes		
		YES	NO	
ronments	YES	CV2	CV1	
Tested Envi	NO	CV0	CV00	

CV00: Predicting performance of unobserved lines in unobserved environments;

CV0: Predicting performance of unobserved environments;

CV1: Predicting performance of new developed lines through relationships with others;

CV2: Predicting Performance of Lines Captured in Other Environments

Selection

Post-Processing

Post-Processing

GxE Predictability

- -

-

아 ☆ S ⓒ 등 등 등 등 로 간 🚺 🚍

A WO A A INCOM

Email Password Forgot your password? New User?

() (085 24.03 (64-64)

Complexities

Providing AWS (Amazon Web Service) as platform for the phenotypic predictability application;

Authentication for different users;

Transferring all the data (G2F, NSRDB, DayMet, and NWS) and scripts (R and Python) to the platform;

Coupling R and Python scripts to develop an integrated software for phenotype-prediction in the G2F experiment.

Conclusions

- The integration of other data sources to improve G2F database unclearly improved the predictability of phenotypes;
- Transferring and coupling the hydroclimate data analytics and GxE modeling scripts to the web service platform is feasible;
- Increasing the number of experiments may lead to a better accuracy of phenotype predictability.

Future work

- Add climatic spatial and temporal analytics of GxE predictability module;
- Add a global sensitivity of GxE accuracy module to estimate sources and propagation of uncertainty in response to various climatic (environmental) factors;
- Add the remote sensing data plugin module to increase the number of climatic variables and phenotypes in the database.

Some more future work

Team members and tasks:

- Francisco Munoz-Arriola; Team leader
- **Diego Jarquin: GxE model developer**; Develops R scripts for phenotypes predictions using GxE
- Hallie Hohbein: Project Manager; Takes care of project management tasks, documentation, and testing
- **Parisa Sarzaeim: Hydroclimate data scientist**; Develops Python scripts to manage hydroclimate database
- Joseph Carter: Frontend/Backend Developer; Works on user authentication, frontend development, and testing.
- **David Recic: Backed Developer**; Creates the database and works on user authentication.
- Zoe Trautman: Frontend Developer; Develops the frontend and writes documentation.
- Anna Zhang: Development Manager; In charge of AWS and helps with backend development.
- Byrav Ramamurthy and Francisco Munoz-Arriola; Computer science advisers

Thank You

This project was supported by the Agriculture and Food Research Initiative Grant number NEB-21-176 and NEB-21-166 from the USDA National Institute of Food and Agriculture, Plant Health and Production and Plant Products: Plant Breeding for Agricultural Production, A1211). Accession Nos.1015252 and No.1009760

