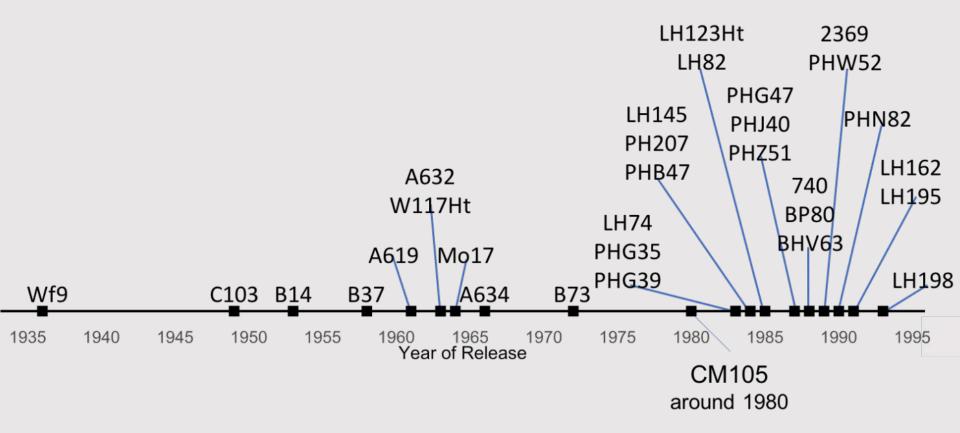


Genotype by Environment Interaction in the 2014 and 2015 Inbred Study

Celeste Falcon and the Genomes to Fields Consortium

G2F collaborator meeting

December 5, 2017


www.Genomes2Fields.org

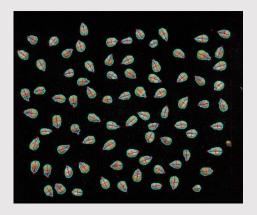
Questions to explore

How much does G × E influence each trait?

- Which environments are best at discriminating among genotypes?
- Which genotypes are the most stable?
- Which traits are good "indicator" traits for assessing G ×
 E? (In other words, which traits are most sensitive to G ×
 E interaction?)

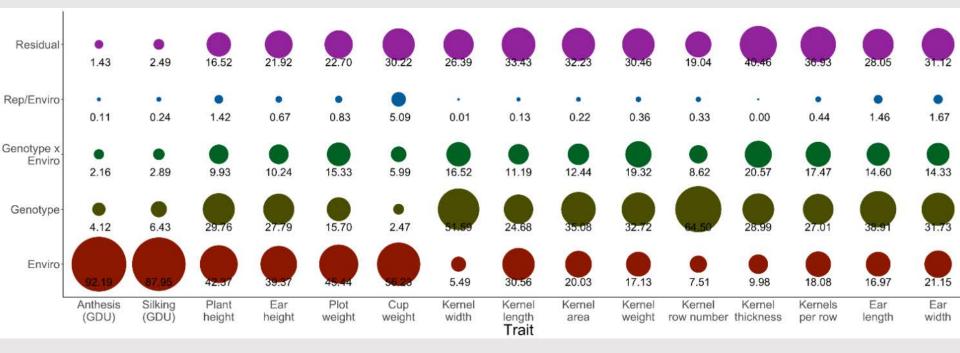
Germplasm 31 inbred lines selected to represent range of locations & maturities and release date

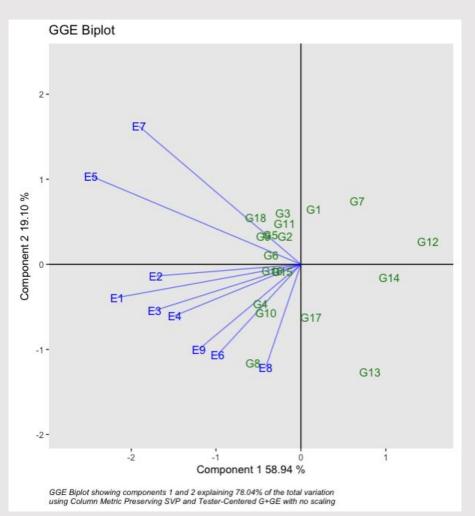
Inbred trials 15 locations in 2014 21 locations in 2015



Traits measured

- ♦ Anthesis date (GDU)♦ Silking date (GDU)
- ♦ Plant height (cm)♦ Ear height (cm)

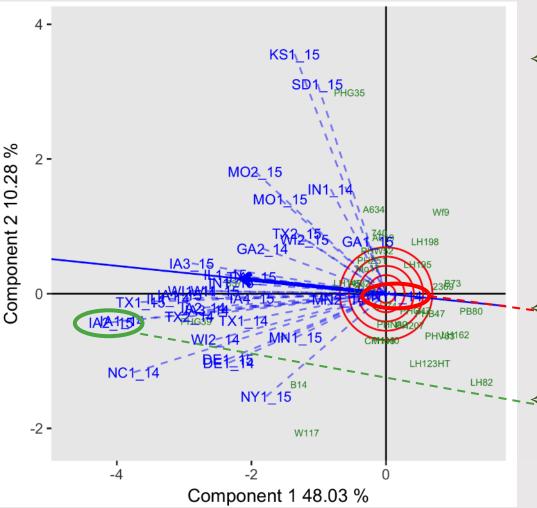




How much is each trait influenced by G × E?

How much is each trait influenced by G × E?

GGE analysis and biplot



Genotypic main effects (x-axis) and Genotype x Environment interactions (y-axis)

\diamond Useful for

- ♦ Environment evaluation
 - ♦ Discriminability
 - \diamond Representativeness
- ♦ Genotype evaluation
 - ♦ Mean
 - \diamond Stability

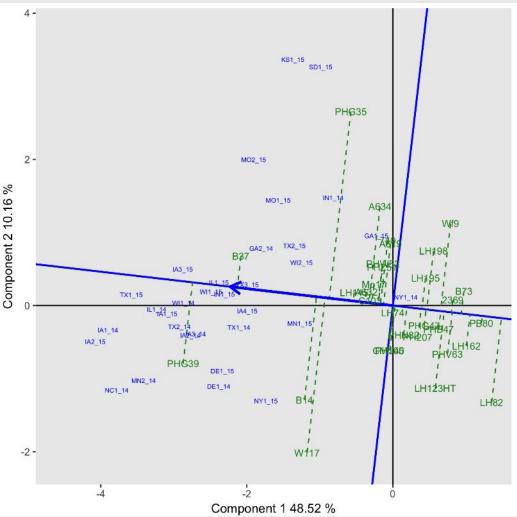
Kernel thickness

Length of the <u>environment</u> <u>vector</u> (from environment to origin) corresponds to standard deviation of genotype means in the environment, a measurement of discriminability

NY1_14 (shortest environment vector) == least discriminable environment

IA2_15 (longest environment vector) == most discriminable environment

Enviro	Anthesis (GDU)	Silking (GDU)	Plant height	Ear height	Plot weight	Cup weight	Kernel width	Kernel length	Kernel area	Kernel weight	Kernel row number	Kernel thickness	Kernels per row	Ear length	Ear width	Median rank
WI1_14	12	17	12	8	2	35	1	5	2	4	6	12	4	4	5	5
IA2_15	23	22	1	15	24	6	16	3	7	3	5	1	7	5	13	7
IA1_14	27	25	31	31	8	33	6	4	3	5	10	3	6	10	11	10
	16	15	18	13	21	36	11	1	5	7	24	6	5	6	2	11
	10	14	13	12	3	29	28	2	8	14	22	16	3	12	1	12
	8	5	8	11	29	26	7	22	10	12	14	20	15	17	4	12
IA1_15	19	20	5	1	17	8	21	11	29	19	11	9	11	13	26	13
IA4_15	20	21	6	6	4	10	13	12	15	21	26	25	13	11	23	13
IL1_14	21	19	14	23	13	25	9	8	6	11	16	8	12	19	7	13
DE1_15	14	18	15	20	7	28	14	9	4	10	28	17	2	3	8	14
MO2_15	2	2	2	2	20	5	19	14	14	13	32	14	17	21	22	14
TX2_14	NA	NA	3	14	10	19	27	27	30	32	18	10	8	7	14	14
IA3_14	22	23	24	21	6	32	3	6	1	2	1	15	24	20	3	15
MN1_15	15	11	16	4	15	11	33	33	32	1	3	30	18	2	24	15
WI1_15	11	10	7	5	11	15	25	7	23	30	8	18	16	15	18	15
IA2_14	25	26	32	32	18	16	10	20	13	15	4	13	14	16	10	16
NY2_15	18	13	21	16	25	23	2	23	9	16	9	NA	NA	NA	NA	16
TX3_15	NA	NA	NA	NA	16	27	15	19	19	24	12	24	9	14	15	16
IA3_15	17	16	11	7	5	4	20	18	27	18	17	11	20	9	28	17
IN1_14	1	1	17	9	28	13	8	25	16	6	21	27	29	28	19	17
TX1_14	NA	NA	4	19	14	20	24	17	21	31	15	23	10	8	16	17
TX1_15	NA	NA	23	27	9	17	5	24	20	28	2	5	1	1	21	17
WI2_15	NA	NA	9	10	12	22	17	10	18	26	7	29	26	18	12	17
IL1_15	NA	NA	25	17	27	18	4	21	12	8	13	19	21	25	27	19
NC1_14	7	8	19	25	19	9	18	15	11	20	23	2	25	27	25	19
NY1_15	NA	NA	NA	NA	33	14	12	13	17	22	20	21	30	22	6	20
MO1_15	5	12	10	3	26	2	29	26	25	17	27	22	22	24	20	22
GA2_14	9	9	20	24	23	21	32	16	31	33	19	26	28	26	9	23
NC1_15	6	6	22	28	31	12	22	29	24	27	29	NA	NA	NA	NA	24
SD1_15	NA	NA	NA	NA	22	1	30	32	33	25	25	7	19	30	17	25
PA1_14	26	24	29	29	1	31	26	35	28	23	NA	NA	NA	NA	NA	27
TX2_15	13	3	27	26	32	3	31	28	22	29	31	28	23	23	29	27
KS1_15	NA	NA	NA	NA	36	24	23	31	26	9	33	4	32	29	30	29
GA1_15	4	7	26	22	30	7	35	30	34	35	30	31	31	31	31	30
NY1_14	24	NA	30	30	35	34	34	36	35	34	35	32	27	32	32	33
NE1_14	3	4	28	18	34	30	36	34	36	36	34	NA	NA	NA	NA	34

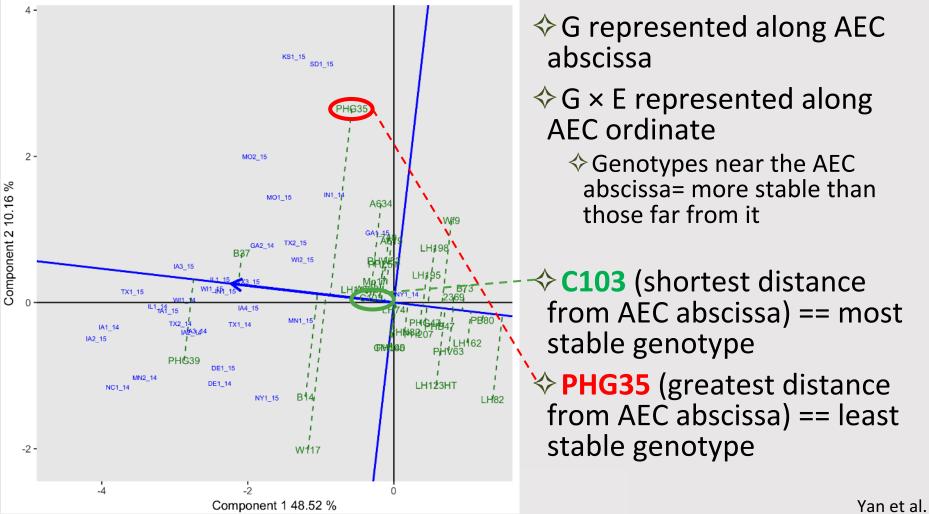

Year-to-year variation has much influence on G × E (perhaps more than location-to-location)
(Elgersma 1990, Yan and Hunt 2001, Singh et al. 2011)

30 Discriminability rank 0 5 vironment

Year-to-year variation has much influence on G × E (perhaps more than location-to-location)
(Elgersma 1990, Yan and Hunt 2001, Singh et al. 2011)

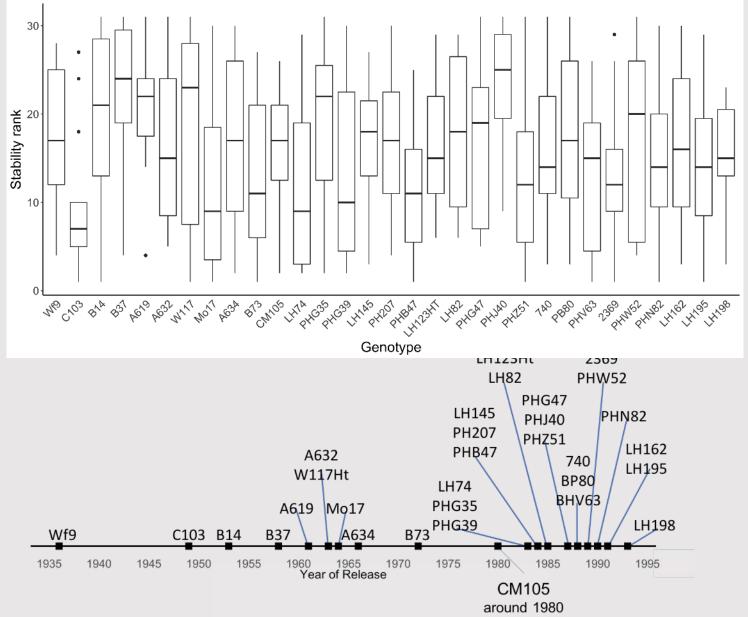
30 Discriminability rank 0 15 5 nvironment

Kernel thickness


"Mean vs. stability" view of GGE biplot

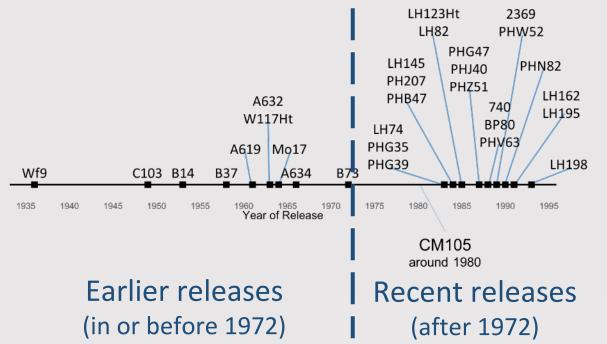
AEC (average environment coordination) abscissa

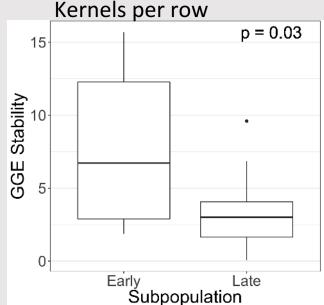
In the origin and origin and an imaginary "average environment" calculated based on all environments

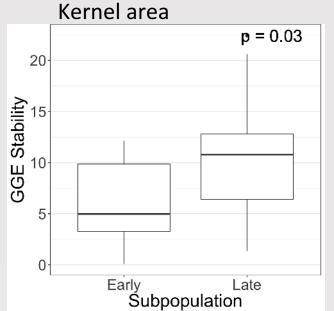

Yan et al.

Kernel thickness

Genotype	Anthesis (GDU)	Silking (GDU)	Plant height	Ear height	Plot weight	Cup weight	Kernel width	Kernel length	Kernel area	Kernel weight	Kernel row number	Kernel thickness	Kernels per row	Ear length	Ear width	Median rank
C103	6	27	2	24	5	18	8	5	7	10	9	1	21	10	5	8
LH74	29	2	17	2	9	6	5	10	15	21	4	2	19	23	2	9
Mo17	30	29	4	1	24	9	3	18	9	12	18	9	10	3	3	9
PHG39	4	3	7	12	8	4	23	22	10	2	5	25	27	20	30	10
B73	10	11	26	27	4	3	13	21	2	8	11	10	20	24	1	11
PHB47	9	16	16	3	25	2	18	2	11	14	1	8	5	11	21	11
2369	16	7	11	11	15	12	16	1	13	3	12	6	23	29	19	12
PHZ51	20	19	6	6	3	5	29	12	31	17	7	16	2	1	12	12
LH123HT	17	6	27	20	10	13	6	29	12	13	16	24	7	27	9	13
LH195	12	8	1	14	14	29	19	9	26	27	20	13	14	7	7	14
PHN82	14	28	21	5	1	15	17	13	21	19	30	11	11	13	8	14
740	26	13	12	31	7	21	15	11	19	24	6	23	18	14	11	15
A632	31	30	10	10	23	25	7	8	6	26	23	5	12	15	18	15
LH198	3	14	22	7	12	19	12	20	14	15	14	21	25	19	23	15
PHV63	19	22	3	15	26	1	9	4	5	18	19	18	24	2	10	15
LH162	27	26	15	16	30	16	4	3	8	4	26	15	4	18	22	16
A634	2	10	19	8	2	24	30	16	17	29	8	28	28	21	15	17
CM105	25	20	20	17	16	8	22	14	16	11	2	20	1	25	26	17
PB80	11	9	31	30	22	23	24	15	28	28	10	3	17	8	16	17
PH207	18	17	5	4	19	27	10	27	20	30	25	12	15	4	17	17
Wf9	15	4	24	28	17	7	11	26	18	9	22	27	26	16	13	17
LH145	22	23	13	18	21	26	21	19	3	16	3	4	6	17	27	18
LH82	8	18	29	13	11	11	28	7	25	6	27	26	22	6	29	18
PHG47	7	21	25	19	20	10	31	6	27	5	13	7	16	28	20	19
PHW52	5	5	23	26	28	20	26	24	30	31	15	17	8	5	6	20
B14	21	25	14	21	31	30	1	23	1	7	21	29	31	12	28	21
A619	23	31	28	22	18	28	20	17	22	25	17	22	9	22	4	22
PHG35	13	12	8	29	13	14	2	25	23	22	28	31	3	26	24	22
W117	1	1	9	23	6	31	14	28	24	1	24	30	30	30	14	23
B37	24	24	18	9	27	22	27	30	4	20	29	14	29	31	31	24
PHJ40	28	15	30	25	29	17	25	31	29	23	31	19	13	9	25	25

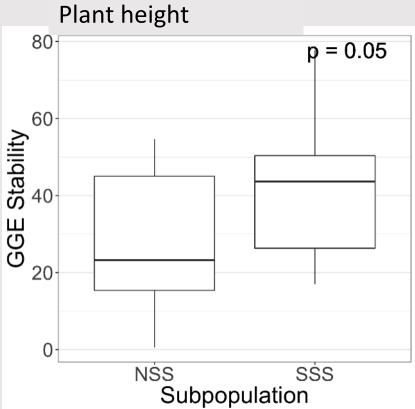

\diamond earlier vs. more recent releases


♦ Kernels per row


More recent releases are more stable

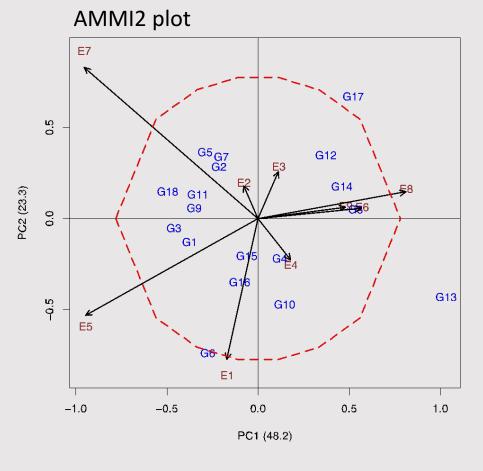
♦ Kernel area

♦ Earlier releases are more stable



Which genotypes are most stable? \diamond NSS vs. SSS

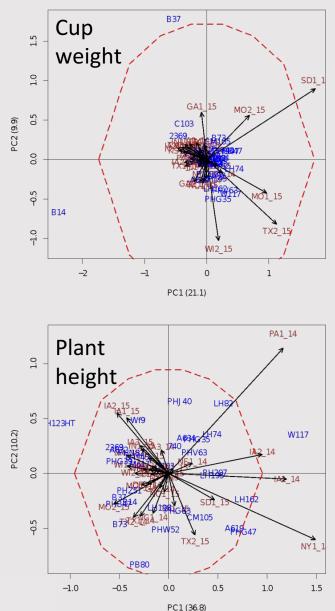
Plant height NSS subpopulation is more stable (marginal significance)

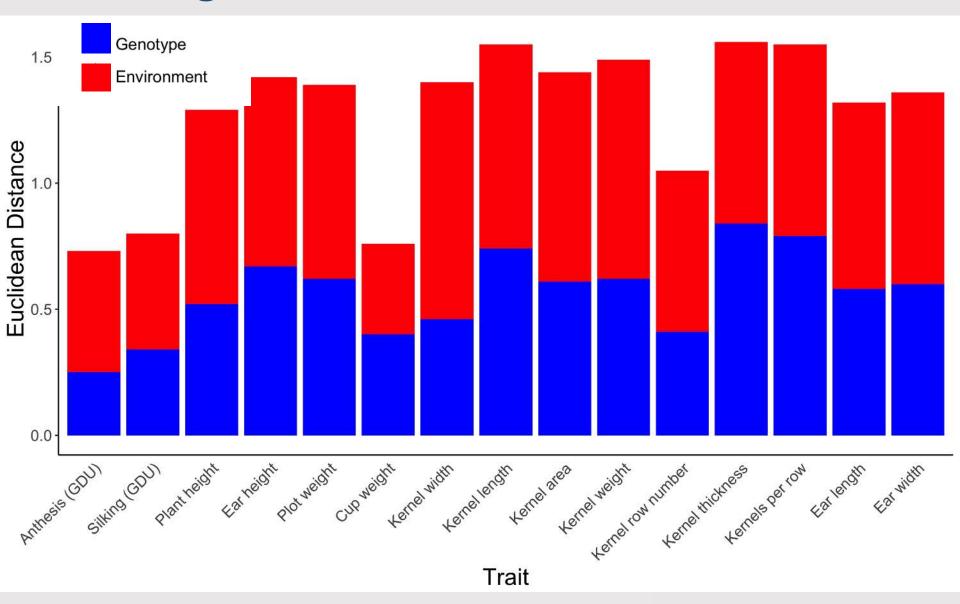

AMMI analysis and biplots

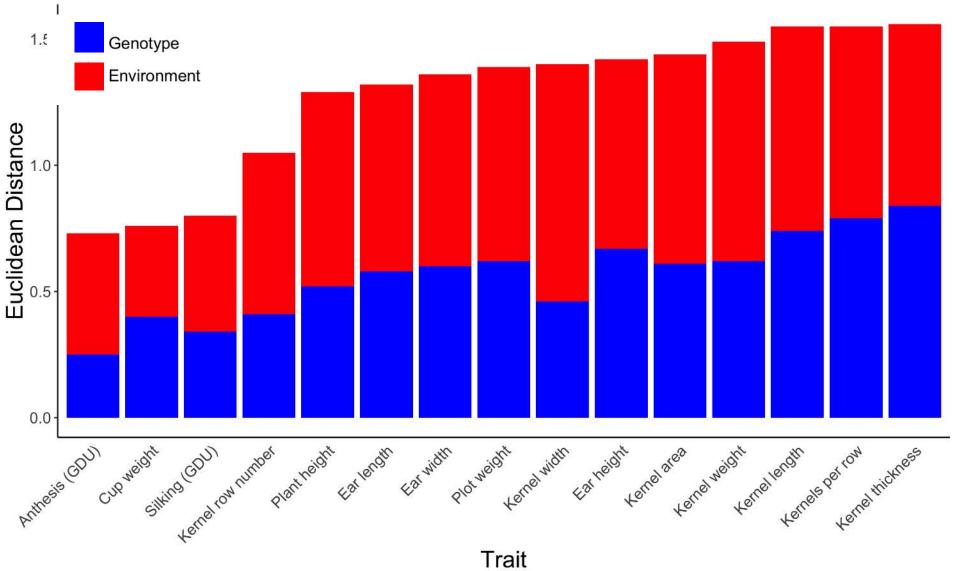
Additive Main effects and Multiplicative Interactions

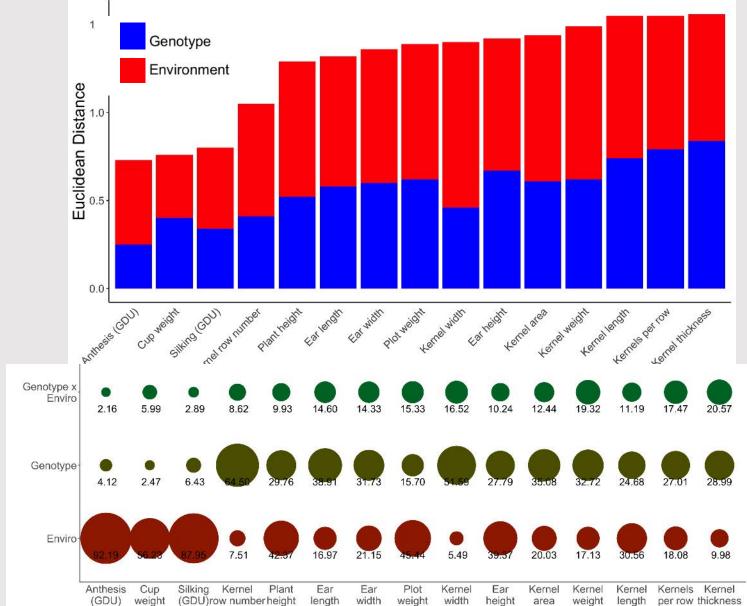
 \diamond Useful for

- Identifying genotypes with similar G × E
- \diamond Identifying similar environments
- Detecting outlying genotypes and environments
- Investigating genotype adaptation


In contrast to GGE, AMMI focuses solely on the G × E interaction (not G + GE)




- Traits for which G × E explains more variation are "sensitive" to G × E
- Visually inspect AMMI PC1 vs. PC2 biplots for clustering or spreading points


♦ To quantify

- Standardize traits
- Conduct AMMI analysis
- Calculate Euclidean distance between pairs of genotype points and pairs of environment points

Concluding remarks

How much is each trait influenced by G × E?
 G x E interaction explains sizeable portion of variation

Which environments are best at discriminating among genotypes?

Notice patterns in the discriminability of each location: some locations discriminate well for most traits while others are poor discriminators for most traits

The top locations for discriminability are in the Midwest...
A as is the majority of the inbreds' origins

♦ Continue experiments discriminating locations

- Difficult to determine because, for many locations, discriminating ability changes between 2014 and 2015
- Should also update to include a measure of representativeness /

Concluding remarks

Which genotypes are the most stable?

- Stability patterns among genotypes are less defined: most genotypes are stable for some traits and unstable for others
- For the most part, early- vs. recent-release germplasm and NSS vs. SSS are not significantly different in terms of stability
- While plant breeders usually seek stable performance, for this experiment, we want to see G × E so keep using the less stable lines (e.g. PHJ40, B37, A619) as well

Which traits are useful for assessing G × E interaction?

- Kernel traits (area, length, thickness, weight) showed greater sensitivity to G
 × E—good "indicator traits" for future studies
- ♦ Flowering time (anthesis and silking) showed the least sensitivity to G × E

GxE 2014 and 2015 Inbred Trials

♦ Jonathan Lynch ♦ Randy Wisser ♦ Joe Knoll ♦ Nick Lauter ♦ Pat Schnable ♦ Torbert Rocheford ♦ Sherry Flint-Garcia \diamond Jim Holland ♦ Aaron Lorenz \diamond Ed Buckler ♦ Margaret Smith ♦ Rebecca Nelson \diamond Mike Gore Wenwei Xu ♦ Natalia de Leon ♦ Shawn Kaeppler ♦ Candy Hirsch

University of Wisconsin

Nathan Miller
Edgar Spalding
Naser AlKhalifah
Emily Rothfusz
Jane Petzoldt
Jonathan Renk
Andy Stuebs

Genomes To Fields Collaborators

♦ Naser Alkhalifah (UW) ♦ Martin Bohn (UIUC) ♦ Ed Buckler (ARS) ♦ Darwin Campbell (ISU) ♦ Ignacio Ciampitti (KSU) ♦ James Clohessy (Cornell) \diamond Liang Dong (ISU) ♦ Jode Edwards (ARS) ♦ David Ertl (IA Corn) ♦ Celeste Falcon (UW) ♦ Sherry Flint-Garcia (ARS) ♦ Joseph Gage (UW) ♦ Jack Gardiner (ISU) ♦ Fiona Goggin (Univ AR) ♦ Byron Good (Guelph) ♦ Mike Gore (Cornell) ♦ Christopher Graham (SDSU) ♦ Patricio Grassini (UNL) ♦ Jerry Hatfield (ARS) \diamond Brien Henry (MSU) \diamond Candy Hirsch (UMN) ♦ Jim Holland (ARS) ♦ Elizabeth Hood (AR-State) ♦ David Hooker (Guelph)

♦ Diego Jarquin (UNL) ♦ Shawn Kaeppler (UW) ♦ Joe Knoll (ARS) ♦ Judith Kolkman (Cornell) \diamond Greg Kruger (UNL) ♦ Nick Lauter (ARS) ♦ Carolyn Lawrence-Dill (ISU) \diamond Liz Lee (Guelph) ♦ Zhizhai Liu (TAMU) ♦ Natalia de Leon (UW) ♦ Alex Lipka (UIUC) ♦ Argelia Lorence (AR-State) ♦ Aaron Lorenz (UMN) ♦ Jonathan Lynch (PSU) ♦ Bridget McFarland (UW) ♦ John McKay (CSU) ♦ Nathan Miller (UW) ♦ Steve Moose (UIUC) ♦ Seth Murray (TAMU) ♦ Rebecca Nelson (Cornell) ♦ Torbert Rocheford (Purdue) ♦ Oscar Rodriguez (UNL) ♦ Cinta Romay (Cornell) ♦ Emily Rothfusz (UW)

♦ James Schnable (UNL) ♦ Pat Schnable (ISU) ♦ Brian Scully (ARS) ♦ Rajandeep Sekhon (Clemson) ♦ Maninder Singh (MSU) ♦ Kevin Silverstein (UMN) ♦ Margaret Smith (Cornell) ♦ Bob Snyder (PSU) ♦ Edgar Spalding (UW) ♦ Nathan Springer (UMN) ♦ Srikant Srinivasan (ISU) ♦ Yiwei Sun (ISU) \diamond Kurt Thelen (MSU) \diamond Peter Thomison (OSU) \diamond Kelly Thorp (ARS) ♦ Mitch Tuinstra (Purdue) ♦ Jason Wallace (UGA) ♦ Renee Walton (ISU) \Rightarrow Rick Ward (UA) ♦ Bill Widdicombe (MSU) ♦ Rod Williamson (IA Corn) \diamond Randy Wisser (UDel) ♦ Wenwei Xu (TAMU) ♦ Cheng-Ting Yeh (ISU)

 \diamond Jianming Yu (ISU)

Genomes To Fields Sponsors

United States Department of Agriculture National Institute of Food and Agriculture

Thank you for your attention!

Questions?

Concluding remarks

 \diamond How much is each trait influenced by G × E?

 \diamond G x E interaction explains sizeable portion of variation

Which environments are best at discriminating among genotypes?

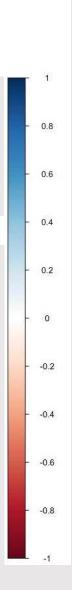
- Notice patterns in the discriminability of each location: some locations discriminate well for most traits while others are poor discriminators for most traits
- ♦ The top locations for discriminability are in the Midwest…as is the majority of the germplasm
- ♦ Continue experiments discriminating locations
 - Difficult to determine because, for many locations, discriminating ability changes between 2014 and 2015
 - Should also update to include a measure of representativeness/uniqueness of each enviro

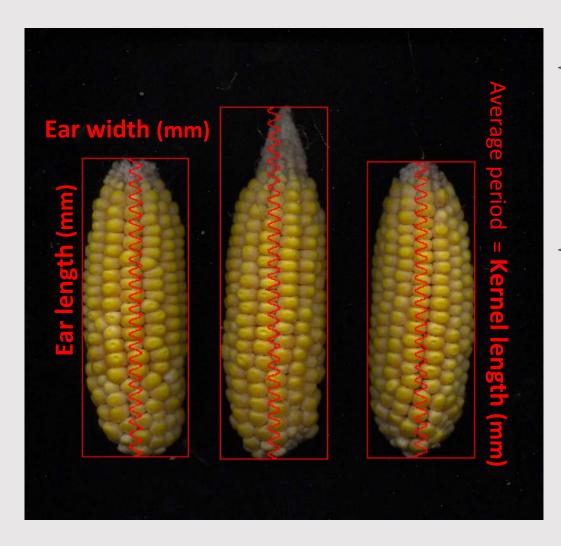
♦ Which genotypes are the most stable?

- Stability patterns among genotypes are less defined: most genotypes are stable for some traits, unstable for others
- For the most part, early- vs. recent-release germplasm and NSS vs. SSS are not significantly different in terms of stability
- While plant breeders usually seek stable performance, for this experiment, we want to see G × E so keep using the less stable lines (e.g. PHJ40, B37, A619) as well

♦ Which traits are useful for assessing G × E interaction?

- Kernel traits (area, length, thickness, weight) showed greater sensitivity to G × E—good "indicator traits" for future studies
- ♦ Flowering time (anthesis and silking) showed the least sensitivity to G × E

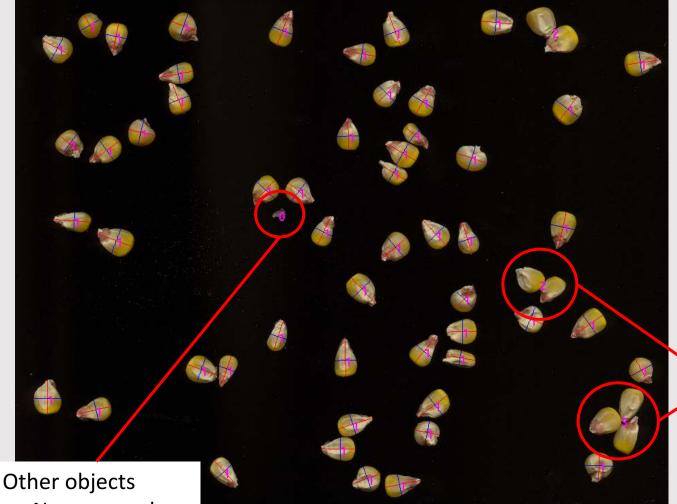

Which traits are correlated with plot weight?


high correlation (ρ > 0.4 or ρ < -0.4) with <u>**Plot weight**</u>:

anthesis date silking date plant height ear height cup weight kernel length kernel thickness

kernels per row

Imaging Output: Ears



Kernel row number: counted manually

Kernels per row = Ear length / Kernel length

Imaging Output: Kernels

60

- Not counted
- Not measured

Kernel weight = Cup weight (g) / kernel count

> Grouped kernels:
> ♦ Counted accurately
> ♦ No measurements recorded

Imaging Output: Cobs

Average RGB value of middle third of cob

GxE Consortium: Data Usage Disclaimer

This presentation includes data analysis and interpretation conducted by the presenter and does not necessarily reflect the observations and conclusions of the GxE Consortium.