

Genome Wide Association Study for Binomially Distributed Traits: A Case Study for Stalk Lodging in Maize

Esperanza Shenstone and Alexander E. Lipka Department of Crop Sciences University of Illinois at Urbana-Champaign

Unified Mixed Linear Model (MLM) in GWAS



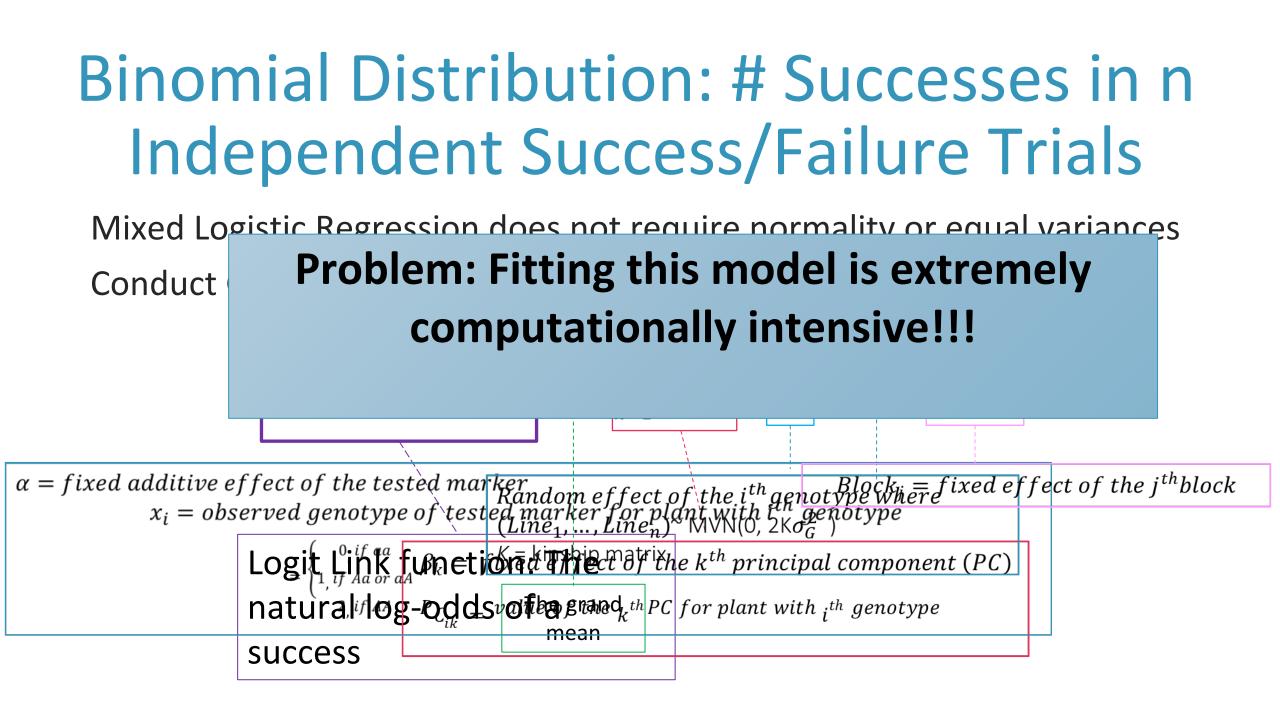
Yu et al. (2006)

Assumptions of the Unified MLM

- Residuals~ NID (θ, σ_e^2)
 - Normal
 - Independent
 - Equal Variance

What do we do if these assumptions cannot be met? (Example: Binomially distributed data)

Yu et al. (2006)



Purpose

Develop a multi-model GWAS approach that will allow mixed model GWAS to be conducted on binomially distributed traits

Stalk Lodging In Maize

Stalk Strength

Disease/Pests

Environmental Factors

5-20% yield losses worldwide

Data Collection- 2016

Two Reps of the Goodman-Buckler diversity panel were planted using incomplete block design

The entire experiment was inoculated with Goss's wilt

In this experiment there was no correlation between disease and lodging

The Jamann Lab at UIUC

Lodging Phenotyping

	Standcount	Number of Plants Lodged	Number of plants Not lodged	Lodging Score (Percent Lodged)
K -	23	6	17	26%

EndBogigmoiwgingfsceasswing Season

Above: Diagram depicting one plot (rep) of one taxa in the field

Treat Lodging Data as a Binomial

Setup of Binomial

Why we think binomial is an appropriate approximation for lodging

The experiment consists of n repeated Within each plot, each plant is a trial trials

Each trial has two outcomes: success or failure

The probability of success, π , is the same on every trial

The trials are independent

Success: plant has lodged Failure: Plant has not lodged

The probability of a plant lodging, π , is the same within a plot

One plant lodging will not change the likelihood of another plant lodging

Multi-Model Approach

Model 1

Fit Logistic Regression Model Controls for population structure only Identify peak SNPs

Model 3

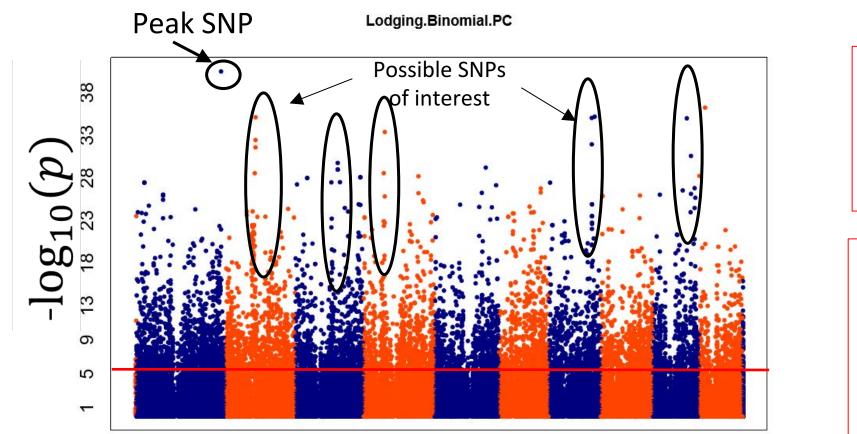
Fit Mixed Logistic Regression Model Using Peak SNPs from Model 1 and

Model 2

Model 2

Fit a Mixed Linear Model Controls for population structure and relatedness Identify peak SNPs

Logistic Regression Identified ~50% of Markers to be Significant



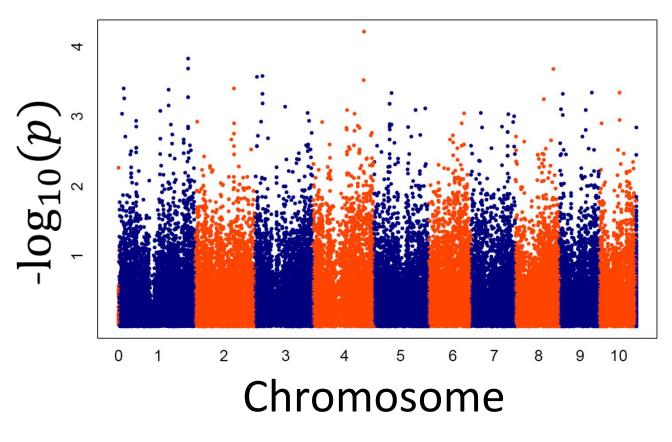
The top 2,796 SNPs from this model were subset

Motivation: mixed logistic regression model can fit 2,796 models in < 1 day

Chromosome

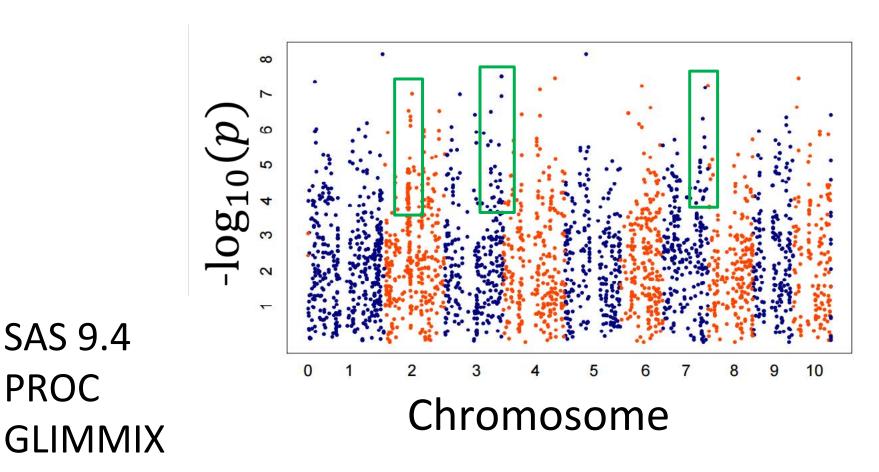
RStudio

Unified MLM Identified No Significant Signals



GAPIT Lipka et al., 2012

Mixed Logistic Regression Identifies 68% of SNPs Identified in Logistic Regression to Be Significant



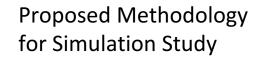
SAS 9.4

PROC

Accounting for familial relatedness helped refine location of putative genomic regions

Signals coincide with those previously identified for traits related to lodging

Simulation Study in Goodman-**Buckler Diversity panel:** Determine which parameters of the binomial distribution contribute the most to identification of genomic signals



Assign SNP from 4K Set to be QTN

Simulate binomial distributed trait

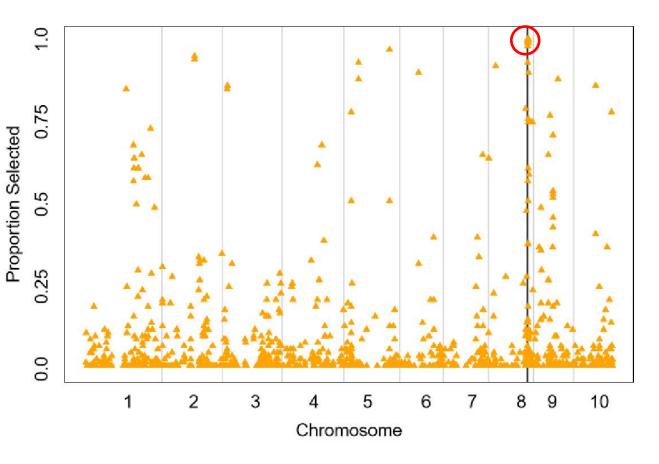
QTN Effect size Stand count per plot Grand mean

For each trait in each setting: Assessed genomic positions of "top 100" markers with strongest associations

Fit logistic regression model at each of 55K SNPs

How does the total number of plants in a plot affect QTN detection? Stand Count: 10

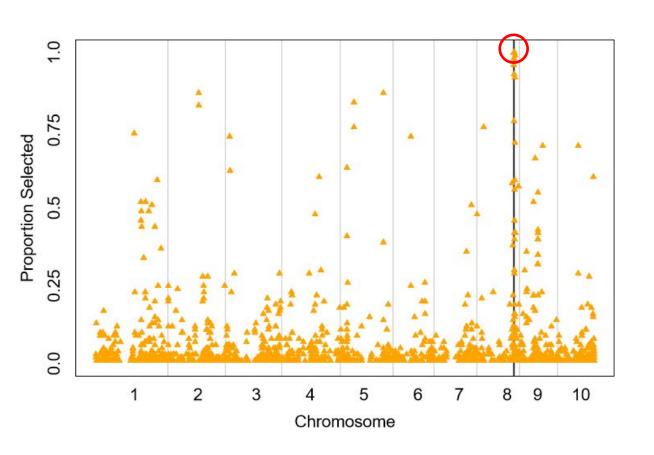
Top 100 SNPs from each trait used to create this figure



Proportion of times detected: 1.0

How does the total number of plants in a plot affect QTN detection? Stand Count: 15

Top 100 SNPs from each trait used to create this figure

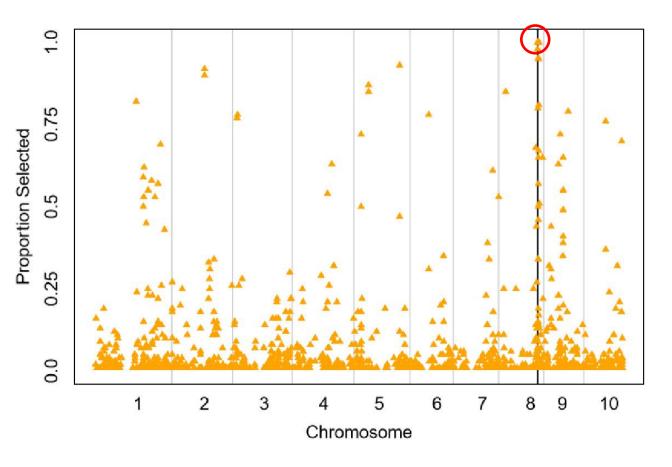


Proportion of times detected: 1.0

Model 1

How does the total number of plants in a plot affect QTN detection? Stand Count: 20

Top 100 SNPs from each trait used to create this figure

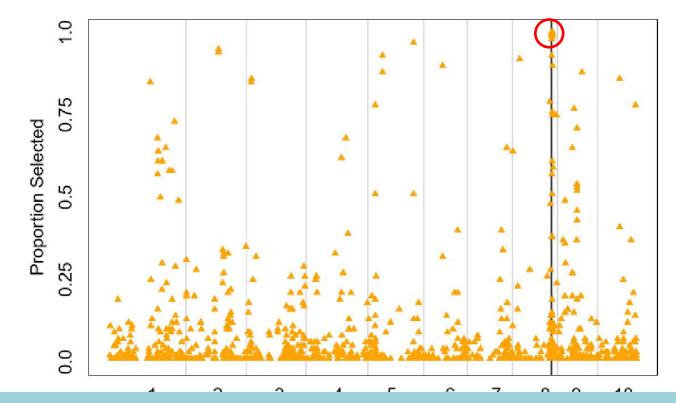


Proportion of times detected: 1.0

Model 1

How does the total number of plants in a plot affect QTN detection? Stand Count: 25

Top 100 SNPs from each trait used to create this figure

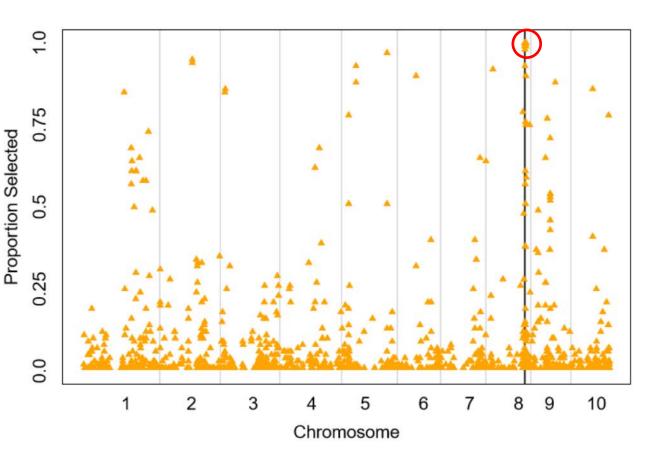


Proportion of times detected: 1.0

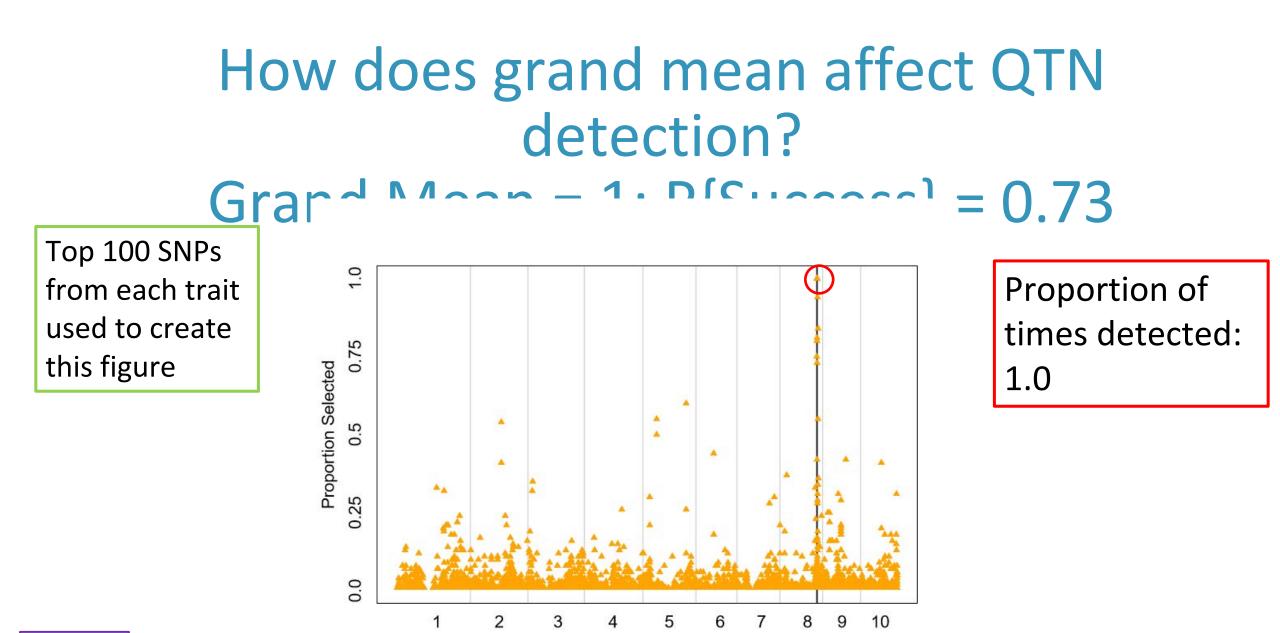
Stand count does not appear to affect our ability to detect QTN

How does grand mean affect QTN detection? <u>Grand Mean = 0 ; P{Success} = 0.5</u>

Top 100 SNPs from each trait used to create this figure



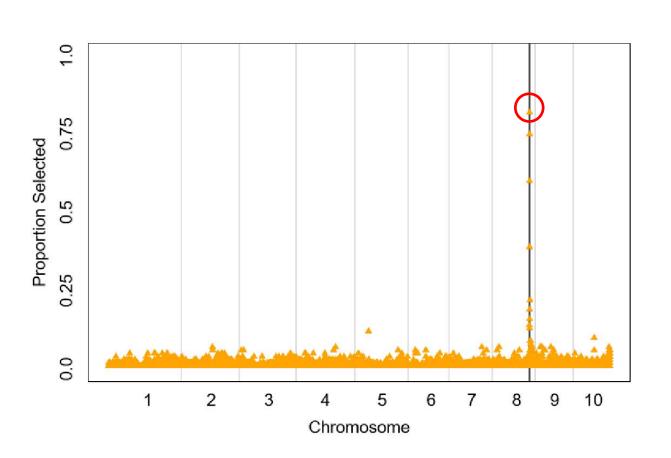
Proportion of times detected: 1.0



Chromosome

How does grand mean affect QTN detection? Grand Mean = 3: P{Success} = 0.95

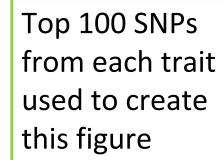
Top 100 SNPs from each trait used to create this figure



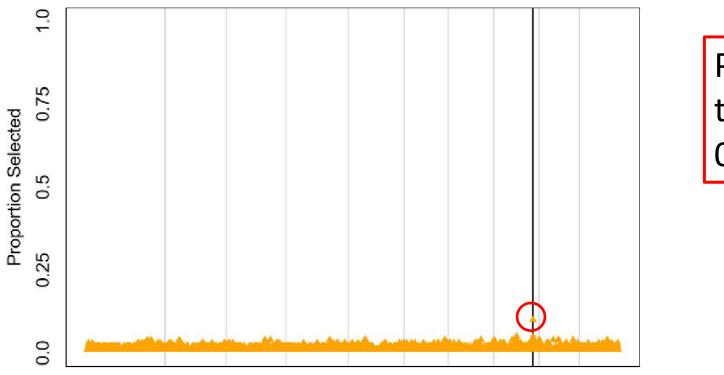
Proportion of times detected: 0.82

Model 1

How does grand mean affect QTN detection? Grand Mean = 5; P{Success} = 0.99



Model 1



Proportion of times detected: 0.10

Grand mean values affects our ability to detect QTN

Future Directions

Any phenotype that measures # successes in a plot of *n* plants could theoretically use these approaches

- Try to design experiments that result in a baseline probability of success of 0.5

How can we fit mixed linear models in a computationally efficient manner on a Windows/Mac computer?

- Temporary solution: multi-model approach is reasonable
- Try to strive for: write software that uses the score test

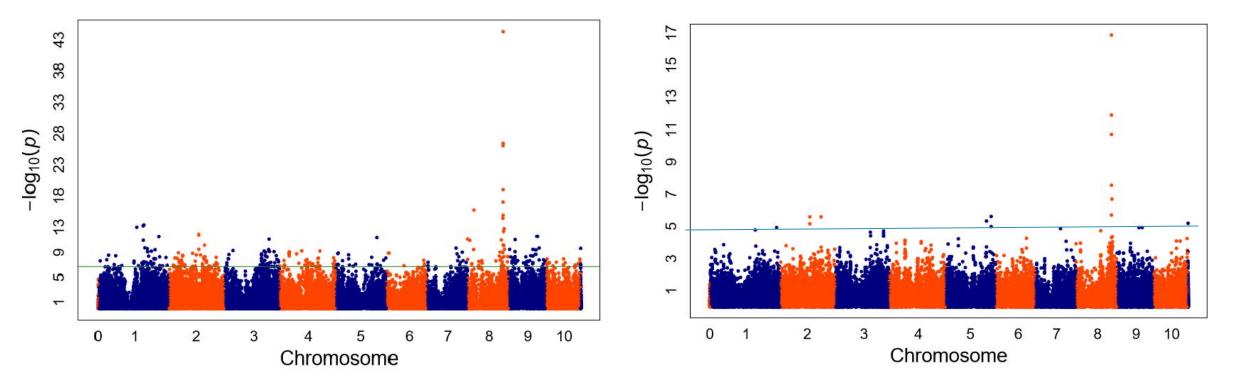
Acknowledgements

<u>Committee Members</u> Dr. Alexander E. Lipka Dr. Tiffany Jamann Dr. Martin Bohn Dr. Pat Brown <u>Graduate Students</u> Amanda Owings

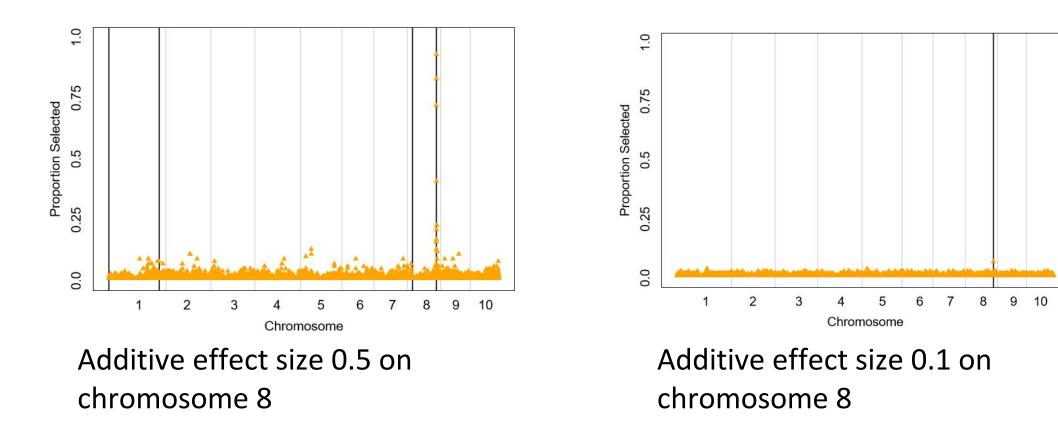
<u>The Jamann Lab</u> Julian Cooper

<u>The Lipka Lab</u> Brian Rice Angela Chen Department of Crop Sciences at UIUC

Model_1_vs. Model 2 Comparison



Varving Additive Effect Sizes (Same Assigned QTN)



Proportion time detected: 0.93

Proportion of times detected:0.07

Summary of Results

Able to identify two significant SNPs in the BP region of Maize Stalk Strength QTL

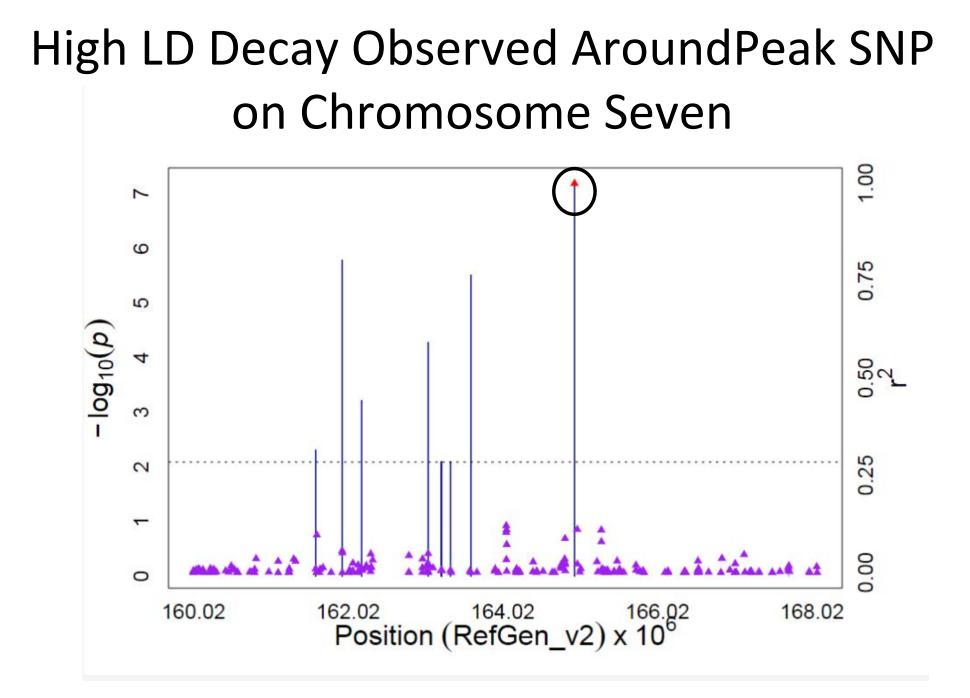
Li et al., 2014, Flint-Garcia et al., 2003, Hu et al., 2012

Peak SNPs on Chromosome 7 were in the same location as the most robust marker association with RPR

Pieffer et al., 2013

A significant SNP on Chromosome 1 was in the same region as a candidate gene for Mediterranean Corn Borer stalk destruction susceptibility

Samayoa et al., 2015



Limiting Factors of This Study

Stalk lodging is a putatively low heritability trait No repeatability across replications

Only one year of data included in this analysis Only one environment

Missing data

Various factors contributed

Summary of Project

Logistic Regression is computationally intensive Approximately 30 seconds to run 1 SNP in SAS ~17.36 days to run 50,000 SNPs

Model 1 and Model 2 are used to identify which SNPs are fit using the complete logistic regression model (Model 3)

The number of SNPs to include is dependent on computational power available

Stalk Lodging data was used to test this approach Some Peak SNPs identified are in the same region as QTL associated with stalk strength, and a candidate gene for MCB Stalk Damage

Data Collection- 2016

- 2 Reps of the 282 diversity panel were planted using incomplete block design
- The entire experiment was inoculated with Goss's wilt
- In this experiment there was no correlation between disease and lodging

The Jamann Lab

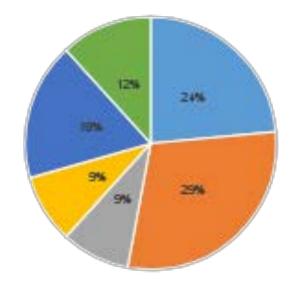
Observed Lodging in the Field

Taxa classified as non stiff stalk were lodged more often

Taxa classified as stiff stalk were lodged the less often

All plots represented in this graph had at least 10 plants lodged

2016 Lodging by Group (Top 34 Plots with most Plants Lodged)



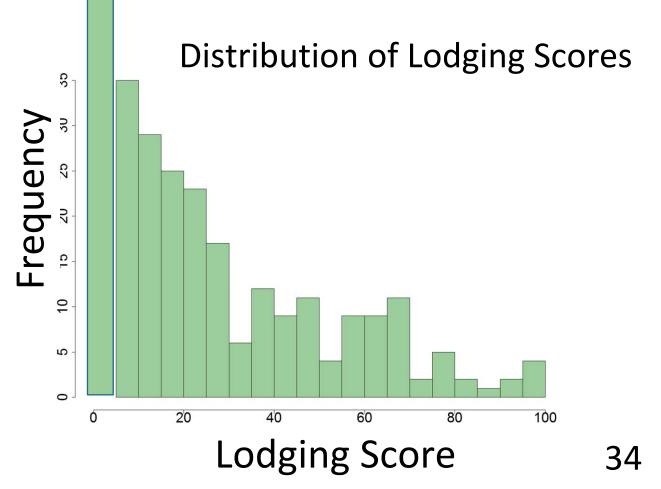
Mixed
Non Stiff Stalk
Stiff Stalk
Sweet
Tropical
Check line

Lodging Score Res duals Follow a Non-Normal D stribution

The Box-Cox procedure was implemented, and λ =-0.6 was the suggested transformation

Transformation was unsuccessful

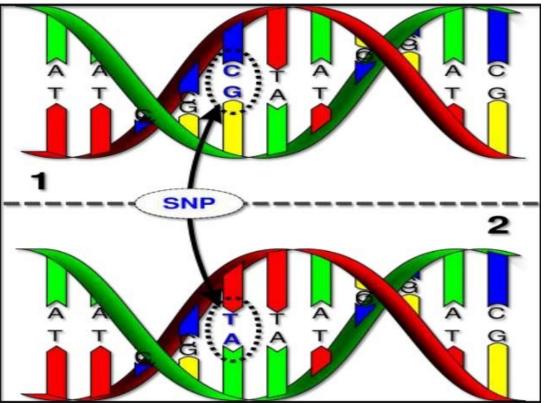
352 plots had no lodging



Genome-Wide Association Study (GWAS)

Search the genome for genetic markers significantly associated with your trait of interest

Allows for the identification of QTLs region of the genome associated with the trait

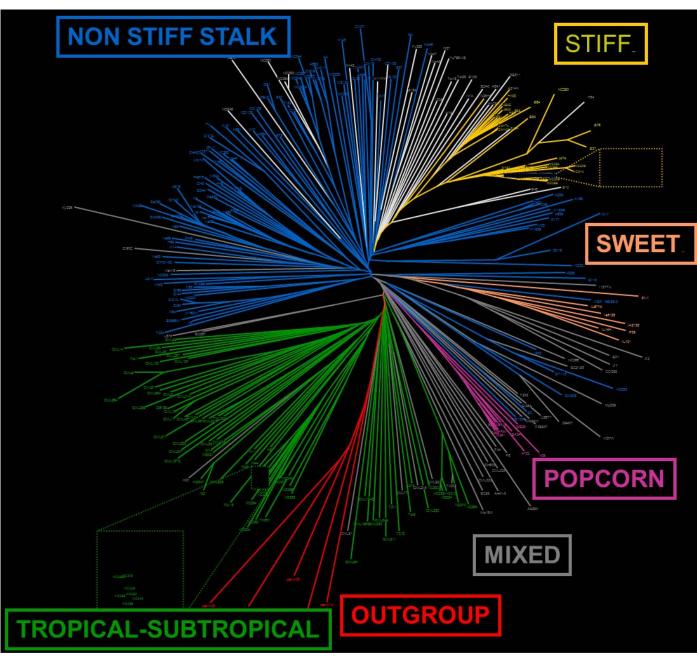


http://knowgenetics.org/snps

Single Nucleotide Polymorphism (SNP): A type of genetic marker

282 Diversity Panel

~75% of all allelic diversity in Maize



Adapted from Flint-Garcia et al., 2005

Outline

Introduction

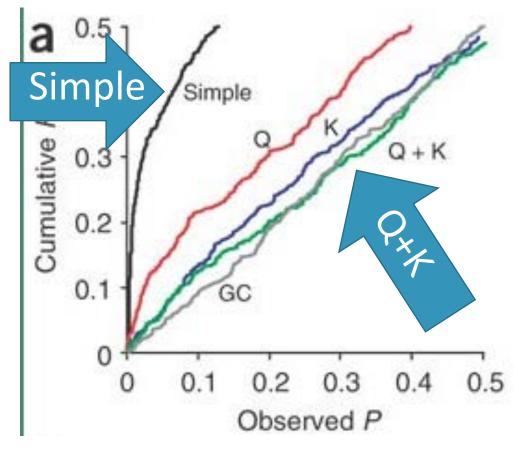
Genome-Wide Association on Stalk Lodging in Maize

Simulation Study

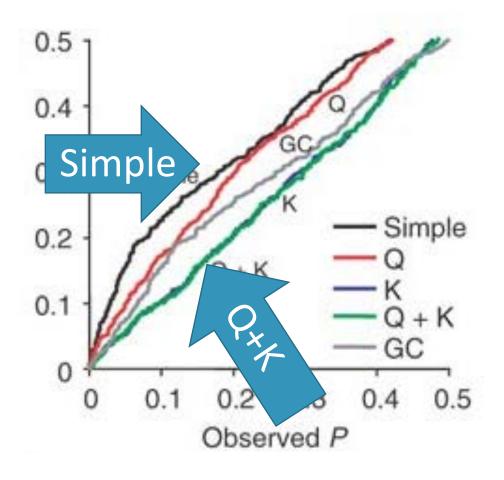
Conclusions

Unified Mixed Linear Model Controls for False Positives

Flowering time of Maize (High population structure)



Ear Diameter of Maize (Low Population Structure)



Yu et al., 2006

Stalk Lodging in Maize

Predicting lodging is challenging

Most methods are destructive and/or use other traits as proxies

Can phenotyping lodging still yield interesting results?

Binomial Data Allows for Logistic Regression

 Y_i are independent binomial random variables with expected values $E\{Y_i\} = n * \pi(plant \ with \ genotype \ i \ in \ block \ j \ has \ lodged)$

and variance of

 $Var(Y_i) = n^* \pi$ (plant with genotype i in block j has lodged) (1 - π (plant with genotype i in block j has lodged))

Methods

One SNPs from <u>4K</u> marker set was assigned to be QTN

Taxa from the 282 diversity panel were simulated to experience lodging

The <u>55K marker</u> set was used to genotype the taxa used in the simulation

Objectives

Evaluate the efficacy of the three model approach to mixed logistic regression

Evaluate the use of the diversity panel for use in logistic regression GWAS

Examine how variables within the data set effect the ability to detect a QTN

Simulation Study Settings

Setting	Grand Mean	Stand Count	Additive effect size
4	-		
1	0	10	0.9
2	1	10	0.9
3	3	10	0.9
4	5	10	0.9
5	0	15	0.9
6	0	20	0.9
7	0	25	0.9

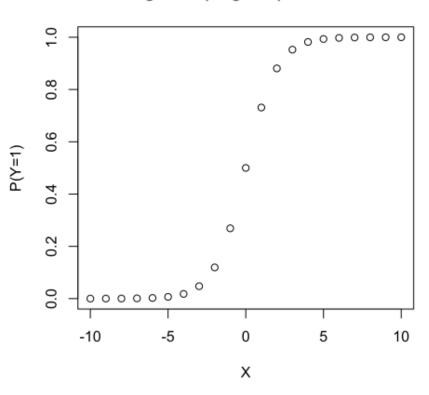
Model 1 identifies Peak SNPs While Accounting for Population Structure

$$\log\left(\frac{\pi(number\ lodged)}{\pi(not\ lodged)}\right) = \beta_o + PCs + \alpha x + Blocks$$

Intercept Affects the Baseline Trait Probability $\pi(x_i)$

Sigmoid Function:

$$\pi(x_i) = \frac{\exp(x_i^{\prime}\beta)}{1 + \exp(x_i^{\prime}\beta)}$$



Sigmoid (Logistic) Function

What does changing the intercept do to our data?

 $\pi(x_i) = 0.99$

 $\pi(x_i) = 0.73$

 $\beta_o = 5$

 $\beta_o = 1$

4722	10	5	5	6	7
33-16	10	9	10	10	10
10	10	9	10	10	1 0
10		9		10	9
9		9		9	7
10		10		8	9
8		5		5	8
8	-10	6	10	9	7
A654	10	10	10	9	10
A659	10	9	6	8	7
1000	40	7	7		0

4722	10	10	10	10
33-16	10	10	10	10
38-11	10	10	10	10
A188	10	10	10	10
A239	10	10	10	10
A441-5	10	10	10	10
A554	10	10	10	10
A6	10	10	10	10
A619	10	10	9	10
A632	10	10	10	10
A634	10	10	10	10
A635	10	10	10	10
A641	10	10	10	10
A654	10	10	10	10
A659	10	10	10	10
A661	10	10	10	9

Model 3 Failed to Converge in SAS Proc GLIMMIX

Possible reasons for this failure:

- "there was not enough variation in the response to attribute any variation to the random effect"
- •Estimated G matrix is not positive definite: "procedure converged to a solutions where the variance of the random effect is 0"

Alternative Solution:

• Use the GMMAT package (Chen et al. 2015) (Only runs on UNIX OS)

Model 2

- Model 2 may have had enough power to successfully detect QTN despite model assumptions being violated
- •Previous studies have shown that linear models can sometimes be approximated by logistic regression models

Conclusion

≻Traditional GWAS requires normal data

>Logistic regression has the potential to analyze non-normally distributed traits

≻The biggest limitation of using logistic regression is the computational power required

> Simulation Study show the need for increased variability of phenotypic data- this is especially hard to achieve in a binary trait

Model 1 identifies Peak SNPs While Accounting for Population Structure

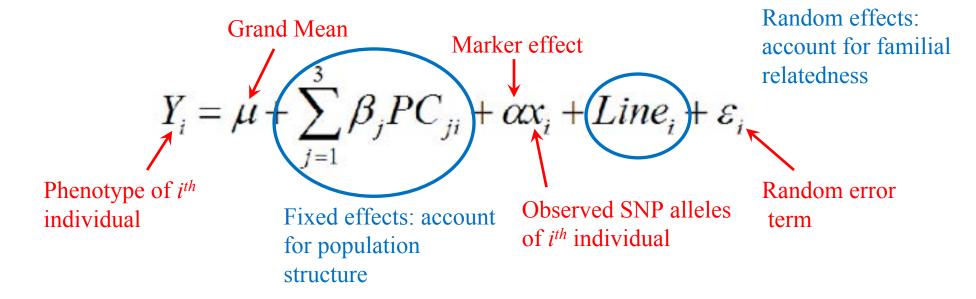
$$\log\left(\frac{\pi(number\ lodged)}{\pi(not\ lodged)}\right) = \beta_o + PCs + \alpha x + Blocks$$

Binomial Data Allows for Logistic Regression

Logistic Regression does not require normality or equal variances Conduct GWAS by fitting a logistic regression model at each SNP

 $\log\left(\frac{\pi(plant \ with \ genotype \ i \ in \ block \ j \ has \ lodged)}{\pi(1 - \pi(plant \ with \ genotype \ i \ in \ block \ j \ has \ lodged)}\right)$ $\sum \beta_k PC_{ik} + \alpha x_i + Line_i + Block_j$ $\alpha = fixed additive effect of the tested marker$ dditive effect of the tested marker $x_i = observed genotype of tested marker$ $(Line_1, ..., Line_n)~ WVN(0, 2K\sigma_G^2)$ thblock Logit Link f_{1} f_{1} f_{1} $f_{Aa or aA}^{0}$ or a final time if Aa or aA $f lx \overline{e} d e f e c \overline{d} e f e c \overline{d} e$ $\beta_k =$ natural log-odds of a plant $C_{i\nu}$ = value bf then $d_{th} PC$ for plant with i^{th} genotype is lodged or not lodged

Model 2 Identifies Peak SNPs While Controlling for Population Structure and Relatedness



$$(Line_1, ..., Line_n) \sim MVN(\mathbf{0}, 2K\sigma_G^2)$$

 $K = \text{kinship matrix} \qquad \begin{array}{l} \text{Measures relatedness between} \\ \text{individuals} \\ Residuals \sim NID \ (0, \sigma_e^2) \end{array}$

Yu et al. (2006)

Adapted from A. Lipka 52

Model 3 is Fit Using Subset of Peak SNPs

 $log\left(\frac{\pi(number\ lodged)}{\pi(not\ lodged)}\right) = \beta_o + PCs + \alpha x + Individuals + Blocks$

Model 3 is fit using top SNPs from Model 1

SAS 9.4 PROC GLIMMIX

Recommendation: Number of SNPs that can be run in approximately 24 hours

Results of Simulation Study in Context of Stalk Lodging Data

- It is possible that our model's ability to accurately detect QTL was compromised because of an observed low rate of lodging
- Can we control
- •If this baseline probability occurs, then the inability of our model to detect QTL may have been exacerbated by an intercept value that is far removed 0.

Peak SNPs that Coincide with Signals Associated with Related Traits				
Type of Region identified	Chr	Location in Literature	Location in Model 3	Notes
Marker	7	159.4 Mb	161.9 Mb 155.8 Mb 164.9 Mb	Three most significant SNPs on Chr 7
qRPR2 QTL	2	236.4-237.0 Mb	236.8 Mb	14 th most significant SNP on Chr 2
qRPR3-1 QTL	3	181.1 Mb-184.7	181.7 Mb 182.0 Mb	92 nd and 98 th most significant SNP On Chr 3