

GxE interaction as a driver for enhance Whole Genomic Prediction on 2014-15 G2F data

Diego Jarquin

December 8, 2016

www.Genomes2Fields.org

Outline

♦Introduction

- ♦The nature of the problem
- ♦Genomic selection in a nutshell

♦ Data description

♦GBS

- ♦Synthetic genotypes
- ♦Experimental design
- \diamond Weather records

♦ Materials and Methods

♦Models

♦Cross-validation Schemes - Predicting traits: from genomes to fields

♦ Results

 \diamond Predictions

♦ Discussion, Conclusions, and Future studies

Introduction: The nature of the problem predicting complex traits in presence of $G \times E$

Options for dealing with GxE

- 1. Ignore it
 - 2. Reduce it
 - 3. Exploit it

Environmental value

Whole Genomic Prediction

Combines genotypic and phenotypic information to calibrate models and perform prediction on un-phenotyped individuals using molecular markers to stablish genetic relationships with the initial set. Data description: GBS Data

♦ Close to 1,000,000 SNPs for 543 Inbreds.

Data description: "Synthetic Genotypes"

♦Added together SNP scores of parents to score hybrid genotype

Data description: Experimental design (two years)

 \diamond

 \diamond

 \diamond

 \diamond

 \diamond

 \diamond

- 1,498 unique hybrids evaluated \diamond involving 543 inbred lines
 - Both ex-PVP and \diamond random RILs.
 - Set of 10 hybrids common to all locations.
 - 18 Locations.

 \diamond

 \diamond

 \diamond

2014 1413

2014 DEH1 OTA GAHN

2014 JAHA 2014 11.11

2014 2014 2014 2014 MOH

- 846 hybrids. \diamond
 - 28% (2014) of potential cells.

2014

 \diamond

- Overlapping sets of 236 [2014]-352 [2015] (mean: 297) hybrids grown at each site x year combination.
- 25 unique Locations.
- 13 locations observed in both years.

2015

2015 2015 1112

2015 2015 ONHS ONHS

2015 0441

- 20 Locations.
- 944 hybrids.

TSMH

ut 15 15 1015 2015 2015

- 37% (2015) of potential cells.
- 292 common hybrids in both years.
- 19.85% of potential cells.

Data description: Weather Information (WI)

8 Environmental Covariates (ECs) hourly recorded.

Data description: Weather Information (WI)

Setting to zero days the planting date 3 methods to include WI were tested.

- ♦ 131 plain or absolute days common to all environments.
- ♦ 8 (ECs) x 24 (hours) x 131 (days) = 25,152 co-variates per environment (W1).
- Computing min, max, and mean per day for each EC gives 8 (ECs) x 3 (min, max, mean)
 x 131 (days) = 3,144 covariates per environment (W2).

Data description: Weather Information (WI)

Setting to zero days the planting date 3 methods to include WI were tested.

 \diamond Four time intervals (1-30, 31-60, 61-90, and 91-131) and 21 ECs per period for a total of 84 ECs (W3) (Perez-Rodriguez et al., 2015):

5 119 123 127 131

Weather similarities between pairs of Environments using W1 ECs.

Matrix of similarities using: Hourly records as covariates. 8 x 24 x 131 = 25,152 ECs.

Low values were observed in the off-diagonal entries.

Only a few environments showed moderate correlations.

Weather similarities between pairs of Environments using W2 ECs.

Matrix of similarities using: Min, max, & means per day. 8 x 3 x 131 = 3,144 ECs.

A slight improvement connecting environments.

But still the improvements look very poor.

Weather similarities between pairs of Environments using W3 ECs.

Matrix of similarities using:

Means of 21 covariates measured in four different time periods [1-30], [31-60], [61-90], & [91-131] days.

21 x 4 = 84 ECs.

Better connectivity between environments via ECs.

Models based on co-variance structures (Jarquin et al, 2014)

M2: E + L + G	Baseline model (maker data), similar results are expected using other Genomic Prediction models (Bayes Alphabet, Penalized Methods).
M3: E + L + G + GW	Model including interactions between markers and environmental covariates.

M4: E + L + G + GW + GE Model accounting for imperfect information via GE (interactions between markers and environments).

- ♦ All terms were treated as random effects
 - ♦ E: environment effect.
 - ♦ L : line effects.
 - \diamond G: main effect of the markers.
 - **GW:** interactions between makers and environmental co-variates (W1, W2, and W3).
 - **GE: interactions between markers and environments.**
 - A total of 8 models were tested (M3 and M4 fitted for each ECs data set [W1, W2, & W3]).

GxE)

Environment component captures around 60% of the phenotypic variability

		Variance components							
Models	E	L	G	GE	GW1	GW2	GW3	R	
E+L	1231.6	224.6						595.4	
E+L+G	1209.4	88.6	234.6					594.0	
E+L+G+GW1	1286.6	79.8	202.5		188.7			462.1	
E+L+G+GW2	1283.0	78.8	205.8			194.3		464.5	
E+L+G+GW3	1269.5	76.5	221.6				179.6	502.5	
E+L+G+GW1+GE	1272.0	80.7	196.7	95.9	116.3			445.9	
E+L+G+GW2+GE	1270.1	80.2	199.7	104.5		109.5		446.0	
E+L+G+GW3+GE	1276.9	79.3	199.0	137.3			81.7	447.3	

Interactions explains	Within environment variability									
a sizable proportion	Models	L	G	GE	GW1	GW2	GW3	R		
of the variability.	E+L	27.4						72.6		
Almost the same	E+L+G	9.7	25.6					64.8		
amount is explained	E+L+G+GW1	8.6	21.7		20.2			49.5		
by markers.	E+L+G+GW2	8.4	21.8			20.6		49.2		
by markers	E+L+G+GW3	7.8	22.6				18.3	51.3		
Two types of	E+L+G+GW1+GE	8.6	21.0	10.2	12.4			47.7		
interactions capture	E+L+G+GW2+GE	8.5	21.2	11.1		11.7		47.5		
more variability than	E+L+G+GW3+GE	8.4	21.1	14.5			8.7	47.3		
just one.										

Predicting traits: from genomes to fields

Results: Predictions – 80% training and 20% testing

0

V + V + V + V + V + V + V + V + V + V +		Tested G	enotypes			
L+E+G+GW 0.52 L+E+G+GW+GE 0.54 L+E+G+GWi+GE 0.55 17% Improvement Yield - CV2	And Area	VES	NO CV1		L+E L+E+G	0.44 0.46
The second secon	ed Envi	CV0	CV00		L+E+G+GW	0.52
Field - CV2	lest				L+E+G+GW+GE	0.55
Yield - CV2					17% Im	provement
• L+E L+E+G L+E+G+GW L+E+G+GW+GE L+E+G+GWi+GE				Yield - CV2		JIOVEIIIEIIL
V					 L+E L+E+G L+E+G+GW+GE L+E+G+GWi+GE 	

Results: Predictions – 80% training and 20% testing

0

YES	VES CV2	NO		L+E L+E+G L+E+G+GW	0.00 0.34 0.41
NO	CV0	CV00		L+W+G+GW+GE L+W+G+GWi+GE	0.43 0.44
				32% Im	provement
			Yield - CV1		
	6	11		• L+E L+E+G	~
~				L+E+G+GW L+E+G+GW+GE L+E+G+GWi+GE	
•	·	•		L+E+G+GW L+E+G+GW+GE L+E+G+GWi+GE	

Results: Predictions – one location at a time including replicates

Results: Predictions – one location at a time without replicates

	Tested G	enotypes				
	YES	NO		-		
yes Action	CV2	CV1			L+E	0.00
vironr		٨			L+E+G	0.25
ed En	CV0	EV00				0.28
Test					L+E+G+GW+GE L+E+G+GWi+GE	0.29
				_		0.52
					200/ 1	
			N.		30% IM	provement
			Yie	ia - CV00		
					L+E+G L+E+G+GW L+E+G+GW+GE L+E+G+GWi+GE	
••	•	•••	•	•		•

Discussion and conclusions

♦ Different prediction problems gave different results.

Interaction components account for close to 25% of within environment variability.

♦Interaction models work well in all schemes

♦ Sizable improvements in predictive ability [7-32%] with respect to the baseline model.

With interaction models good results predicting 20% of missing are expected.

Incomplete field trials scenario [CV2] showed an average Predictive Ability (aPA) of 0.55; 17% improvement with respect to baseline model.

♦ Newly developed lines [CV1] gives an aPA of 0.44; 32% improvement.

Discussion and conclusions

♦ Predicting new environments

The different ECs co-variance matrices improved PA in most of the cases; however, there was not a unique co-variance structure outperforming the others.

Including replicates observed in other environments [CV0] genomic information lose relevance (all models perform similarly).

However, ECs might improve aPA (0.51) about 7% (we will work to explain why and how to take advantage of this).

Discussion and conclusions

Predicting unobserved genotypes in unobserved environments (CV00) genomic information becomes the main source of information.

The aPA was about 0.32 selecting the best results according to the different models (30% improvement).

♦Future studies.

- Include ECs in a more informed way to connect observed and unobserved sites with important maize stages.
- ♦Incorporate information from other sources (aerial images).

GxE Consortium: Data Usage Disclaimer

This presentation includes data analysis and interpretation conducted by the presenter and does not necessarily reflect the observations and conclusions of the GxE Consortium.

G X E Cooperators

Principal Investigators who grew GxE trials in 2014-2016

- ♦ Martin Bohn (UIUC)
- ♦ Ed Buckler (ARS)
- ♦ Ignacio Ciampitti (KSU)
- ♦ Jode Edwards (ARS)
- ♦ Sherry Flint-Garcia (ARS)
- ♦ Mike Gore (Cornell)
- ♦ Christopher Graham (SDSU)
- ♦ Candy Hirsch (UMN)
- ♦ Jim Holland (ARS)
- ♦ Elizabeth Hood (A-State)
- ♦ David Hooker (Guelph)
- ♦ Fiona Goggin (A-State)
- ♦ Shawn Kaeppler (UW)

- ♦ Joe Knoll (ARS)
- ♦ Judith Kolkman (Cornell)
- ♦ Greg Kruger (UNL)
- ♦ Nick Lauter (ARS)
- ♦ Liz Lee (Guelph)
- ♦ Natalia de Leon (UW)
- ♦ Argelia Lorence (A-State)
- ♦ Aaron Lorenz (UMN)
- ♦ Jonathan Lynch (PSU)
- ♦ Steve Moose (UIUC)
- ♦ Seth Murray (TAMU)
- ♦ Rebecca Nelson (Cornell)
- ♦ Torbert Rocheford (Purdue)

- ♦ Oscar Rodriguez (UNL)
- ♦ Cinta Romay (Cornell)
- ♦ James Schnable (UNL)
- ♦ Brian Scully (ARS)
- Rajandeep Sekhon (Clemson)
- Margaret Smith (Cornell)
- ♦ Nathan Springer (UMN)
- ♦ Kurt Thelen (MSU)
- ♦ Peter Thomison (OSU)
- Mitch Tuinstra (Purdue)
- ♦ Jason Wallace (UGA)
- ♦ Randy Wisser (UDel)
- ♦ Wenwei Xu (TAMU)

Genomes To Fields Collaborators

⁺G2F Executive Committee members *GxE Coordinating Groups ~G2F co-lead

- Martin Bohn (UIUC)* \diamond
- Ed Buckler (ARS)⁺ \diamond
- Darwin Campbell (ISU)* \diamond
- Ignacio Ciampitti (KSU) \diamond
- \diamond James Clohessy (Cornell)
- Michael Coen (UW) \diamond
- Liang Dong (ISU) \diamond
- Jode Edwards (ARS)* \diamond
- \diamond David Ertl (IA Corn)*†
- Sherry Flint-Garcia (ARS)* \diamond
- Joseph Gage (UW) \diamond
- Jack Gardiner (ISU)* \diamond
- Fiona Goggin (A-State) \diamond
- Byron Good (Guelph) \diamond
- Mike Gore (Cornell) \diamond
- \diamond Christopher Graham (SDSU)
- \diamond Patricio Grassini (UNL)
- Jerry Hatfield (ARS) \diamond
- Candy Hirsch (UMN) \diamond
- Jim Holland (ARS) \diamond

- Elizabeth Hood (A-State) \diamond
- David Hooker (Guelph) \diamond
- Diego Jarquin (UNL)* \diamond
- Shawn Kaeppler (UW)⁺ \diamond
- \diamond
- Judith Kolkman (Cornell)
- \diamond
- \diamond
- Carolyn Lawrence-Dill (ISU)*
- \diamond
- Natalia de Leon (UW)*+~
- Argelia Lorence (A-State)

- \diamond Nathan Miller (UW)
- \diamond Steve Moose (UIUC)
- \diamond Seth Murray (TAMU)*
- Rebecca Nelson (Cornell) \diamond
- \diamond Jane Petzoldt (UW)*
- Torbert Rocheford (Purdue) \diamond

- \diamond Oscar Rodriguez (UNL)
- \diamond Cinta Romay (Cornell)*
- James Schnable (UNL) \diamond
- Pat Schnable (ISU)+~ \diamond
- \diamond Brian Scully (ARS)
- Rajandeep Sekhon (Clemson) \diamond
- \diamond Margaret Smith (Cornell)
- Edgar Spalding (UW) \diamond
- \diamond Nathan Springer (UMN)⁺
- Srikant Srinivasan (ISU)* \diamond
- Yiwei Sun (ISU)* \diamond
- Kurt Thelen (MSU) \diamond
- \diamond Peter Thomison (OSU)
- Kelly Thorp (ARS) \diamond
- Mitch Tuinstra (Purdue) \diamond
- \diamond Jason Wallace (UGA)
- Rod Williamson (IA Corn) \diamond
- Randy Wisser (UDel)* \diamond
- Wenwei Xu (TAMU) \diamond
- \diamond Jianming Yu (ISU)

- Liz Lee (Guelph)*
- Zhizhai Liu (TAMU) \diamond
- \diamond
- Aaron Lorenz (UMN)*
- Jonathan Lynch (PSU)⁺

- Joe Knoll (ARS)
- \diamond
- Greg Kruger (UNL)
- Nick Lauter (ARS)
- \diamond

- \diamond
- \diamond
- \diamond

Genomes To Fields Sponsors

Nebraska ComBoard MinnesotaCorn RESEARCH & PROMOTION COUNCIL

ASSOC

WERS

0 N

Arkansas

Corn & Grain Sorghum Board

Marketing Board

Illinois Corn

