GxE Field Experiment 2024 SOP Visit the GxE website for the latest SOP and information updates: www.genomes2fields.org ### **About this document:** Our goal is to collect the most "raw" and meaningful data possible, to be collated in a centralized database and shared with the public. Raw data will give us the most power to analyze and leverage insights from the data. It is a difficult and time-consuming task to assimilate all this information into one place in a consistent format. Therefore, we ask that you pay close attention to the form of data types collected in terms of units, formatting, etc. Please note that multiple people now collectively serve as and fulfill the needs of the G2F Coordinator position. Please direct any inquiries to g2f@wisc.edu. Lastly, we would like to thank you for your monumental efforts and unprecedented collaborative spirit. Without you, the Genomes to Fields GxE Project would not be possible. ### Thank you! ### **Document Content** | GxE | Field Experiment 2024 Checklist | 3 | |------|--|----| | l. | Field Layout for 2024 and 2025 seasons | 5 | | II. | WatchDog 2700 Weather Station Configuration | 9 | | III. | Seed Information | 9 | | IV. | Field Metadata Collection: | 9 | | At | t Planting: | 9 | | In- | n-Season: | | | At | t Harvest: | | | ٧. | Phenotype and Performance Data Collection: | 10 | | In- | n-Season: | 10 | | At | t Harvest: | | | App | endix A: Phenotyping Handbook | 11 | | Appe | endix B: Soil Sampling Handbook | 18 | | Appe | endix C: Additional Weather Station Resources | 19 | | a. | Annual Watchdog 2700 Pre-Season Tasks | | | b. | WatchDog 2700 Field Setup | 20 | | с. | In-Field WatchDog 2700 Maintenance | 21 | | d. | Post-Field Season WatchDog 2700 Removal | 21 | | e. | Additional Links to Resources: | 22 | | f. | WatchDoa Troubleshootina and Calibration Methods | 22 | # **GxE Field Experiment 2024 Checklist** | Pre-season | 1: | |-------------|--| | | For new cooperators only: | | | Email Natalia de Leon at <u>ndeleongatti@wisc.edu</u> to get started. | | | For all cooperators (including new): | | | Order weather station components with assistance of Iowa Corn Promotion Board (David Ertl at | | | dertl@iowacorn.org) | | | Communicate seed packaging and shipping requirements with Natalia de Leon (<u>ndeleongatti@wisc.edu</u>) | | | and the g2f Team (g2f@wisc.edu) | | | Perform <u>annual maintenance</u> on weather station and clear existing data | | | Begin work on Google Sheets location folder through your personalized link | | At Planting | g: | | | Install weather station in field (ideally one day before planting, if possible) | | | Ensure external instruments are in correct port: | | | (soil moisture - port A, soil temperature - port B, solar radiation - port C) | | | Collect and record the GPS coordinates of weather station | | | Collect weather station serial number [m2700s0XXXX] on card inside weather station | | | Perform weather station setup tasks and activate weather station recording | | | Collect soil sample and send to Ward Laboratories in Kearney, NE (Appendix B) | | | Record planting date in fieldbook provided through your personalized link | | | Update Google Sheets metadata with: | | | Weather station serial number and GPS coordinates | | | Date weather station was placed in the field | | | GPS coordinates of field corners, starting at corner of plot 1 | | In-Season: | | | | Create and upload field map to Google folder. Notify g2f Team (g2f@wisc.edu) of any field/planting | | | issues or adjustments to original field map | | | Perform weather station in-season checks at each field visit. Download data monthly, if possible | | | Record the following phenotypic data in the fieldbook: | | | Flowering dates | | | Plant height | | | Ear height | | | If damaging winds occur, cooperators may choose to record green snap and date of event | | | Stand count | | | Record the following field information in the Google Sheets agronomic information: | | | Pesticides and herbicides: date, type and amount applied | | | Fertilizer: date, type, and amount applied | | | Irrigation schedule: date and amount applied (if applicable) | | | Fertigation schedule: date and amount applied (if applicable) | | | Notes on field anomalies, phenotyping errors and any other issues | | | | GxE 2024 Field Experiment SOP Released January 2024 | At Harvest: | | |--------------|---| | | Record the following performance data in the fieldbook: | | | Root lodging | | | Stalk lodging | | | Plot weight | | | Plot moisture | | | Test weight | | Post-Season: | | | | _ Verify information in Google Sheets metadata | | | _ Upload final field information, phenotype, and performance data to Google Sheet | | | Download weather station data and upload unedited SWD files to Google folder | ### I. Field Layout for 2024 and 2025 seasons - a. Each trial is arranged in two replications (number of plots depending on the Field-Location). For the purposes of blocking in the field, the primary division is by replication. - b. The objective of the experimental design for the main experiment (Experiment = "G2F_Main_LH287", and "G2F_Main_PHP02") was to balance the need for within-site replication against the overall goal of the GxE project to test as many different hybrids as possible at each Field-Location. - c. Within an experiment there are two replications, and each replication will have one plot of each of the core check hybrids based on seed availability (Family = "CHECK"). A sample of at least 25 of the experimental hybrids is also replicated within each Field-Location (with a different sample replicated at each environment. Environment is a combination of Field-Location and year). The remaining plots are occupied by hybrids that occur in only a single replication within the environment. Finally, entries were assigned to incomplete blocks of 10 or 20 plots each within each replication. This represents a combination of features of incomplete block designs, augmented designs, and partially replicated designs. D-efficiency was optimized at each level of sampling in the design (selection of hybrids among environments, assignment to replications within environments, and assignment to incomplete blocks within replications) to maximize balance under the restrictions of variably limited seed availability for some hybrids. - d. Most hybrid trials are arranged in two-row plots, 20' long with 30-72" alleys between plots. Filler should be used as needed to minimize edge effects. - e. The diagram on the following page represents the ideal setup with plot numbers (500 plots experiment). Departures from this specific layout are completely acceptable. - f. Empty seed packets are provided for collaborators to fill with locally adapted hybrid (Family = "LOCAL_CHECK"). - g. Planting density and plot dimensions are determined by individual collaborators and reported in the Metadata in the Google Sheet. - h. Additional experiments were created upon request to facilitate additional phenotyping for specific goals. Experiment = "YS" (External Yellow Stripe), "HIP_Hybrid", and "HIP Inbred". Below is a list of genotypes present in the core check hybrids for the main experiments ("G2F_Main_LH287", and "G2F_Main_PHP02"), "YS" (External Yellow Stripe), "HIP_Hybrid", and "HIP_Inbred". List of core check hybrids for 2024-2025 GxE Project main experiments ("G2F_Main_LH287", and "G2F_Main_PHP02") | Pedigree | Comments | |---------------|---------------------| | COMMERCIAL1 | Commercial check | | COMMERCIAL2 | Commercial check | | COMMERCIAL3 | Commercial check | | COMMERCIAL4 | Commercial check | | COMMERCIAL5 | Commercial check | | COMMERCIAL6 | Commercial check | | 3IIH6/LH244 | | | LH287/LH244 | | | LH82/LH244 | | | MM501D/LH244 | | | PH24E/LH244 | | | PHJ89/LH244 | | | PHK56/LH244 | | | PHN46/LH244 | | | PHP02/LH244 | | | PHR03/LH244 | | | PHW30/LH244 | | | LH195/PHZ51 | | | LH244/PHK76 | | | PHB47/PHZ51 | | | PHG29/PHG47 | | | PHJ40/PHAJ0 | | | PHRE1/PHTD5 | | | 2369/LH123HT | | | B14A/OH43 | | | B37/H95 | | | B73/M017 | | | B73/PHN82 | | | B73/TX779 | | | CG119/CG108 | | | CG44/CGR01 | | | PHB47/PHN82 | | | PHG39/PHN82 | | | PHW52/PHM49 | | | TX777/LH195 | | | TX779/LH195 | | | 90DJD28/LH287 | G2F_Main_LH287 only | | PH1CA/LH287 | G2F_Main_LH287 only | | 01DIB2/LH287 | G2F_Main_LH287 only | | LH195/LH287 | G2F_Main_LH287 only | | PH44A/LH287 | G2F_Main_LH287 only | | 01CSI6/LH287 | G2F_Main_LH287 only | | LH198/LH287 | G2F_Main_LH287 only | List of genotypes present in the "YS" (External Yellow Stripe), "HIP_Hybrid", and "HIP_Inbred" experiments. | YS | HIP_Hybrid | HIP_Inbred | |--------------------------------|-------------|------------| | 2369/LH123HT | B73/M017 | B73 | | ,
B14A/H95 | B73/PHK76 | B84 | | B14A/M017 | B73/PHN82 | LH145 | | B14A/OH43 | B73/PHZ51 | LH185 | | B37/H95 | LH145/LH82 | LH195 | | B37/M017 | LH195/M017 | LH244 | | B37/OH43 | LH195/PHK76 | LH82 | | B73/M017 | LH195/PHN82 | MO17 | | B73/PHM49 | LH195/PHZ51 | PH207 | | B73/PHN82 | LH244/MO17 | PHAJ0 | | B73/TX779 | LH244/PHK76 | PHB47 | | CG119/CG108 | LH244/PHN82 | PHJ40 | | CG44/CGR01 | LH244/PHZ51 | РНЈ89 | | F42/H95 | PHB47/MO17 | PHP02 | | F42/MO17 | PHB47/PHK76 | PHR03 | | F42/OH43 | PHB47/PHN82 | PHRE1 | | LH74/PHN82 | PHB47/PHZ51 | PHT69 | | PHG39/PHN82 | PHG29/PHG47 | PHTD5 | | PHW52/PHM49 | PHJ40/PHAJ0 | PHW65 | | PHW52/PHN82 | PHJ89/PH207 | PHZ51 | | REDEAR/LH195 (REDEAR is TX951) | PHRE1/PHTD5 | TX714 | | TX110/87916 | TX714/PHZ51 | W22 | | TX714/TX779 | | | | TX777/LH195 | | | | TX779/LH195 | | | **Suggested field layouts:** | | | | | | 24 | Row | Exam | ple | | | | | Row# | | | | | REP | 1 | | | | | | | | REF | 2 | | | | | |----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|---|----------|-----|-----|-----|-------|--------|-----|-----|-----|----------|----------|-----|---------------|---------------|---------------|---------------|-----|-----|-----| | | | FILI | LER | | 500 | 499 | 498 | 497 | 496 | 495 | 494 | 493 | 0' | \vdash | 50 | 51 | 100 | 101 | 151 | 200 | 201 | 250 | 251 | 300 | 301 | 350 | 351 | 400 | 401 | 450 | 451 | , | | | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 | 490 | 491 | 492 | 0' | 1 | L | | - | = 3 | 5 = | ļō | | 0 | 1 | ō | - | \dashv | | - | | - | - | - | | | 480 | 479 | 478 | 477 | 476 | 475 | 474 | 473 | 472 | 471 | 470 | 469 | 0' ω | N | 49 | 52 | 99 | 102 | 152 | 199 | 202 | 249 | 252 | 299 | 302 | 349 | 352 | 399 | 402 | 449 | 452 | 5 | | | 457 | 458 | 459 | 460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 0' | w | 48 | 53 | 98 | 103 | 153 | 198 | 203 | 248 | 253 | 298 | 303 | 348 | 353 | 398 | 403 | 448 | 453 | 3 | | | 456 | 455 | 454 | 453 | 452 | 451 | 450 | 449 | 448 | 447 | 446 | 445 | 0' | + | | 3 | | | | + | | | | - | | | | \rightarrow | | - | - | - | | | 433 | 434 | 435 | 436 | 437 | 438 | 439 | 440 | 441 | 442 | 443 | 444 | 0' ~ | 4 | 47 | 54 | 97 | 104 | 154 | 197 | 204 | 247 | 254 | 297 | 304 | 347 | 354 | 397 | 404 | 447 | 454 | 3 | | | 432 | 431 | 430 | 429 | 428 | 427 | 426 | 425 | 424 | 423 | 422 | 421 | 0' - | U. | 46 | 55 | 96 | 105 | 155 | 196 | 205 | 246 | 255 | 296 | 305 | 346 | 355 | 396 | 405 | 446 | 455 | 5 | | | 409 | 410 | 411 | 412 | 413 | 414 | 415
402 | 416 | 417 | 418
399 | 419
398 | 420
397 | 0' | + | - | | - | + | | + | | | | - | | \dashv | | \rightarrow | | - | _ | _ | | | 385 | 386 | 387 | 388 | 389 | 390 | 391 | 392 | 400
393 | 394 | 395 | 396 |) <u> </u> | 0 | 45 | 56 | 95 | 106 | 156 | 195 | 206 | 245 | 256 | 295 | 306 | 345 | 356 | 395 | 406 | 445 | 456 | ĥ | | REP 2 | 384 | 383 | 382 | 381 | 380 | 379 | 378 | 377 | 376 | 375 | 374 | 373 | 0' 13 | 7 | 44 | 57 | 94 | 107 | 157 | 194 | 207 | 244 | 257 | 294 | 307 | 344 | 357 | 394 | 407 | 444 | 457 | 3 | | 湿 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 0' | + | | 7 | _ | + | - | + | | | | - | | \dashv | - | \rightarrow | | - | _ | _ | | | 360 | 359 | 358 | 357 | 356 | 355 | 354 | 353 | 352 | 351 | 350 | 349 | 0' 5 | ∞ | 43 | 58 | 93 | 108 | 158 | 193 | 208 | 243 | 258 | 293 | 308 | 343 | 358 | 393 | 408 | 443 | 458 | 3 | | | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 0' 17 | 9 | 42 | 59 | 92 | 109 | 159 | 192 | 209 | 242 | 259 | 292 | 309 | 342 | 359 | 392 | 409 | 442 | 459 | 5 | | | 336 | 335 | 334 | 333 | 332 | 331 | 330 | 329 | 328 | 327 | 326 | 325 | 0' | + | | _ | | + | + | + | | | | \dashv | _ | | | \rightarrow | - | - | _ | - | | | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 0' 5 | 10 | 41 | 60 | 91 | 110 | 160 | 191 | 210 | 241 | 260 | 291 | 310 | 341 | 360 | 391 | 410 | 441 | 460 | 2 | | | 312 | 311 | 310 | 309 | 308 | 307 | 306 | 305 | 304 | 303 | 302 | 301 | 0' 21 | 11 | 40 | 61 | 90 | 111 | 161 | 190 | 211 | 240 | 261 | 290 | 311 | 340 | 361 | 390 | 411 | 440 | 461 | , | | | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | | + | | | _ | _ | - | + | | | | - | | \rightarrow | | \rightarrow | _ | - | _ | | | | 288 | 287
266 | 286
267 | 285
268 | 284
269 | 283
270 | 282 | 281
272 | 280
273 | 279
274 | 278
275 | 277 | 0' 23
0' — | 12 | 39 | 62 | 89 | 112 | 162 | 189 | 212 | 239 | 262 | 289 | 312 | 339 | 362 | 389 | 412 | 439 | 462 | 3 | | | 264 | 263 | 262 | 261 | 260 | 259 | 258 | 257 | 256 | 255 | 254 | 253 | 0' % | 13 | 38 | 63 | 88 | 113 | 163 | 188 | 213 | 238 | 263 | 288 | 313 | 338 | 363 | 388 | 413 | 438 | 463 | | | \dashv | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | | + | | | + | + | + | + | | | \vdash | - | - | \dashv | \rightarrow | \rightarrow | \rightarrow | + | + | - 1 | | | 240 | 239 | 238 | 237 | 236 | 235 | 234 | 233 | 232 | 231 | 230 | 229 | 0' | 14 | 37 | 64 | 87 | 114 | 164 | 187 | 214 | 237 | 264 | 287 | 314 | 337 | 364 | 387 | 414 | 437 | 464 | 0 | | | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 0' 29 | 15 | 36 | 65 | 86 | 115 | 165 | 186 | 215 | 236 | 265 | 286 | 315 | 336 | 365 | 386 | 415 | 436 | 465 | ò | | | 216 | 215 | 214 | 213 | 212 | 211 | 210 | 209 | 208 | 207 | 206 | 205 | 0' — | + | | | | + | | - | | | | - | | \dashv | | \rightarrow | _ | - | _ | - | | | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 0' ==================================== | 16 | 35 | 66 | 85 | 116 | 166 | 185 | 216 | 235 | 266 | 285 | 316 | 335 | 366 | 385 | 416 | 435 | 466 | 9 | | | 192 | 191 | 190 | 189 | 188 | 187 | 186 | 185 | 184 | 183 | 182 | 181 | 0'
&& | 17 | 34 | 67 | 20 | 117 | 167 | 184 | 217 | 234 | 267 | 284 | 317 | 334 | 367 | 384 | 417 | 434 | 467 | à | | | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 0' | + | | _ | - | + | + | + | | | | - | _ | \dashv | \rightarrow | \rightarrow | \rightarrow | - | + | - | | | 168
145 | 167
146 | 166
147 | 165
148 | 164
149 | 163
150 | 162
151 | 161
152 | 160
153 | 159
154 | 158
155 | 157
156 | 0' 3 | 18 | 33 | 89 | 83 | 118 | 168 | 183 | 218 | 233 | 268 | 283 | 318 | 333 | 368 | 383 | 418 | 433 | 468 | 3 | | | 144 | 143 | 142 | 141 | 140 | 139 | 138 | 137 | 136 | 135 | 134 | 133 | o
0' | 19 | 32 | 69 | 82 | 119 | 169 | 182 | 219 | 232 | 269 | 282 | 319 | 332 | 369 | 382 | 419 | 432 | 469 | 3 | | REP 1 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | n' — | K, | | ~ | _ | - | - | + | | | \vdash | - | | \dashv | - | \rightarrow | | - | _ | - | | ≅ | 120 | 119 | 118 | 117 | 116 | 115 | 114 | 113 | 112 | 111 | 110 | 109 | 0' | 20 | 31 | 70 | 20 | 120 | 170 | 181 | 220 | 231 | 270 | 281 | 320 | 331 | _ | 381 | 420 | 431 | 470 | | | | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 4 '0 | 21 | 30 | 71 | 80 | 121 | 171 | 180 | 221 | 230 | 271 | 280 | 321 | 330 | 371 | 380 | 421 | 430 | 471 | ŝ | | | 96 | 95 | 94 | 93 | 92 | 91 | 90 | 89 | 88 | 87 | 86 | 85 | <u>'0</u> | K, | N3 | ~1 | 7 | + | + | + | 2 | | 2: | | | \dashv | - | \rightarrow | _ | - | _ | _ | | | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 0' 43 | 22 | 29 | 72 | 79 | 122 | 172 | 179 | 222 | 229 | 272 | 279 | 322 | 329 | 372 | 379 | 422 | 429 | 472 | | | | 72 | 71 | 70 | 69 | 68 | 67 | 66 | 65 | 64 | 63 | 62 | 61 | 0' 45 | 23 | 28 | 73 | 78 | 123 | 173 | 178 | 223 | 228 | 273 | 278 | 323 | 328 | 373 | 378 | 423 | 428 | 473 | à | | | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 0' | _ | l., | -1 | - | + | | - | | | | _ | | | | - | - | - | _ | - | | | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 0' | 24 | 27 | 74 | 77 | 124 | 174 | 177 | 224 | 227 | 274 | 277 | 324 | 327 | 374 | 377 | 424 | 427 | 474 | 1 | | | 25
24 | 26
23 | 27 | 28 | 29 | 30
19 | 31
18 | 32
17 | 33
16 | 34
15 | 35
14 | 36
13 | U' 49 | 25 | 26 | 75 | 76 | 125 | 175 | 176 | 225 | 226 | 275 | 276 | 325 | 326 | 375 | 376 | 425 | 426 | 475 | , c | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 0' — | | V. | N3 | - | + | | + | | | | _ | | | - | | + | _ | _ | - | | .ow# | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | _ | 20' | 20' | 20' | 20' | 20' | 20, 20 | 20' | 20' | 20' | 20' | 20' | 20' | 20' | 20' | 20' | 20' | 20' | 20' | ž | | Row# | | | | | RE | P 1 | | | | | | | | | RE | P 2 | | | | | · | |------|----------------| | 1 | 1 | 50 | 51 | 100 | 101 | 150 | 151 | 200 | 201 | 250 | 251 | 300 | 301 | 350 | 351 | 400 | 401 | 450 | 451 | 500 | | | w | 2 | 49 | 52 | 99 | 102 | 149 | 152 | 199 | 202 | 249 | 252 | 299 | 302 | 349 | 352 | 399 | 402 | 449 | 452 | 499 | | | Ui | 3 | 48 | 53 | 98 | 103 | 148 | 153 | 198 | 203 | 248 | 253 | 298 | 303 | 348 | 353 | 398 | 403 | 448 | 453 | 498 | | | 7 | 4 | 47 | 54 | 97 | 104 | 147 | 154 | 197 | 204 | 247 | 254 | 297 | 304 | 347 | 354 | 397 | 404 | 447 | 454 | 497 | | | 9 | 5 | 46 | 55 | 96 | 105 | 146 | 155 | 196 | 205 | 246 | 255 | 296 | 305 | 346 | 355 | 396 | 405 | 446 | 455 | 496 | | | Ξ | 6 | 45 | 56 | 95 | 106 | 145 | 156 | 195 | 206 | 245 | 256 | 295 | 306 | 345 | 356 | 395 | 406 | 445 | 456 | 495 | | | 13 | 7 | 44 | 57 | 94 | 107 | 144 | 157 | 194 | 207 | 244 | 257 | 294 | 307 | 344 | 357 | 394 | 407 | 444 | 457 | 494 | | | 15 | ∞ | 43 | 58 | 93 | 108 | 143 | 158 | 193 | 208 | 243 | 258 | 293 | 308 | 343 | 358 | 393 | 408 | 443 | 458 | 493 | | | 17 | 9 | 42 | 59 | 92 | 109 | 142 | 159 | 192 | 209 | 242 | 259 | 292 | 309 | 342 | 359 | 392 | 409 | 442 | 459 | 492 | | | 19 | 10 | 41 | 60 | 91 | 110 | 141 | 160 | 191 | 210 | 241 | 260 | 291 | 310 | 341 | 360 | 391 | 410 | 441 | 460 | 491 | | | 21 | 11 | 40 | 61 | 90 | 111 | 140 | 161 | 190 | 211 | 240 | 261 | 290 | 311 | 340 | 361 | 390 | 411 | 440 | 461 | 490 | 50] | | 23 | 12 | 39 | 62 | 89 | 112 | 139 | 162 | 189 | 212 | 239 | 262 | 289 | 312 | 339 | 362 | 389 | 412 | 439 | 462 | 489 | 50 Row Example | | 25 | 13 | 38 | 63 | 88 | 113 | 138 | 163 | 188 | 213 | 238 | 263 | 288 | 313 | 338 | 363 | 388 | 413 | 438 | 463 | 488 | Exam | | 27 | 14 | 37 | 64 | 87 | 114 | 137 | 164 | 187 | 214 | 237 | 264 | 287 | 314 | 337 | 364 | 387 | 414 | 437 | 464 | 487 | ple | | 29 | 15 | 36 | 65 | 86 | 115 | 136 | 165 | 186 | 215 | 236 | 265 | 286 | 315 | 336 | 365 | 386 | 415 | 436 | 465 | 486 | | | 31 | 16 | 35 | 66 | 85 | 116 | 135 | 166 | 185 | 216 | 235 | 266 | 285 | 316 | 335 | 366 | 385 | 416 | 435 | 466 | 485 | | | 33 | 17 | 34 | 67 | 82 | 117 | 134 | 167 | 184 | 217 | 234 | 267 | 284 | 317 | 334 | 367 | 384 | 417 | 434 | 467 | 484 | | | 35 | 18 | 33 | 68 | 83 | 118 | 133 | 168 | 183 | 218 | 233 | 268 | 283 | 318 | 333 | 368 | 383 | 418 | 433 | 468 | 483 | | | 37 | 19 | 32 | 69 | 82 | 119 | 132 | 169 | 182 | 219 | 232 | 269 | 282 | 319 | 332 | 369 | 382 | 419 | 432 | 469 | 482 | | | 39 | 20 | 31 | 70 | 81 | 120 | 131 | 170 | 181 | 220 | 231 | 270 | 281 | 320 | 331 | 370 | 381 | 420 | 431 | 470 | 481 | | | 41 | 21 | 30 | 71 | 80 | 121 | 130 | 171 | 180 | 221 | 230 | 271 | 280 | 321 | 330 | 371 | 380 | 421 | 430 | 471 | 480 | | | 43 | 22 | 29 | 72 | 79 | 122 | 129 | 172 | 179 | 222 | 229 | 272 | 279 | 322 | 329 | 372 | 379 | 422 | 429 | 472 | 479 | | | 45 | 23 | 28 | 73 | 78 | 123 | 128 | 173 | 178 | 223 | 228 | 273 | 278 | 323 | 328 | 373 | 378 | 423 | 428 | 473 | 478 | | | 47 | 24 | 27 | 74 | 77 | 124 | 127 | 174 | 177 | 224 | 227 | 274 | 277 | 324 | 327 | 374 | 377 | 424 | 427 | 474 | 477 | | | 49 | 25 | 26 | 75 | 76 | 125 | 126 | 175 | 176 | 225 | 226 | 275 | 276 | 325 | 326 | 375 | 376 | 425 | 426 | 475 | 476 | | | | 20' | | ## II. WatchDog 2700 Weather Station Configuration - a. For investigators with multiple GxE experiments, weather stations should be located within ¼ mile of all trial fields. For trials > ¼ mile apart, or for trials with varying water treatments, request a second micro weather station to measure soil moisture differences. - b. In order to maintain consistency and adhere to meteorological measurement standards, the weather station should be placed at a height of 2 meters (~6 ft). Purchase a 1 3/8" wide x 10' 6" long top rail fence post similar to one found here: https://goo.gl/40KoTW. This will replace the 3 ft. post that comes with the tripod. Cut the post at the non-tapered end so you're left with 7 ft. - c. Complete annual maintenance prior to the field season using checklist in Appendix C Part A - d. Complete weather station setup the day before planting, using checklist in Appendix C Part B - e. Throughout the field season, use Appendix C Part C to conduct weather station checks at each field visit. Record date and time of check in on location-specific Google Sheet - f. Record irrigation amounts and dates in on location-specific Google Sheet - g. Remove the station from the field after harvest using instructions in Appendix C Part D - h. Collect data and upload to Google Sheets using Appendix C Part E ### III.Seed Information a. All seed has been chemically treated with Cruiser Extreme 250. ### IV. Field Metadata Collection: Collaborators will record the following metadata in the appropriate location on a location-specific Google Sheet through the link that was shared. ### At Planting: - i. Planting dates [MM/DD/YY] - ii. Collect soil sample for basic analysis at Ward Laboratories. See Appendix B for detailed instructions. - iii. Weather station serial number [m2700s0XXXX] - iv. Latitude/longitude (GPS coordinates) of field location - v. Row spacing and plot dimensions - vi. Map of field layout with cardinal heading of first pass (i.e. the direction of pass 1 looking toward the end of the field). Need help figuring out cardinal direction? Visit http://acscdg.com/. Locate your field, draw a line from plot 1 parallel with rows and record Azimuth number. - vii. Local hybrid checks, if present - viii. Previous crop - ix. Tillage method - x. Weather station documents irrigation? (if applicable) [Y/N] - xi. Notes on planting errors, field anomalies, equipment, etc. ### In-Season: - xii. Pesticides and herbicides: date, type and amount applied - xiii. Fertilizer: date, type, and amount applied - xiv. Irrigation schedule: date and amount applied (if applicable) - xv. Fertigation schedule: date and amount applied (if applicable) - xvi. Notes on field anomalies, phenotyping errors and issues ### At Harvest: - xvii. Harvest dates [MM/DD/YY] - xviii. Notes on field anomalies, whole-field issues, equipment and technical issues, or harvesting issues ### V. Phenotype and Performance Data Collection: Evaluate hybrids for the following traits. See <u>Appendix A</u> for specific measurement instructions. ### In-Season: - i. Stand Count may be taken as juveniles and at harvest - ii. Anthesis [MM/DD/YY] - iii. Silking [MM/DD/YY] - iv. Plant Height (cm) - v. Ear Height (cm) - vi. If damaging winds occur, cooperators may choose to record green snap and date of event #### At Harvest: - vii. Stalk Lodging plant count (NOT percentage) - viii. Root Lodging plant count (NOT percentage) - ix. Stand Count plant count - x. Plot Weight (lbs) - xi. Grain Moisture (%) - xii. Test Weight (lbs/bu) ## **Appendix A: Phenotyping Handbook** | | | Trait Su | ımmary | | |--------------------------|---|----------------------|--|---| | Trait | Unit | Timing | Description/Procedure | Measurement Notes | | A 41 | date | - | Date that 50% of plants in the | | | Anthesis | [MM/DD/YY] | at flowering | plot began shedding pollen. | | | C:11-i | date | - | Date that 50% of plants it the | | | Silking | [MM/DD/YY] | at flowering | plot had visible silks. | | | Ear Height | centimeter
[cm] | plant maturity | Height to node of attachment of the ear. | One plant is considered sufficient since these are hybrids and are no segregating for traits | | Plant Height | centimeter
[cm] | plant maturity | Height to attachment of flag leaf. | One plant is considered sufficient
since these are hybrids and are no
segregating for traits | | Root Lodging | count
[number] | before harvest | Number of plants root lodged i.e. those stems that lean substantially to one side (> 15% from vertical). Count includes goosenecked plant that have "straightened up" after becoming lodged earlier in the season. | Emphasis is on the number of plants. | | Stalk Lodging | count
[number] | before harvest | Number of plants stalk
lodged, i.e. broken between
ground level and top ear node | Emphasis is on the number of plants. | | Stand Count | count
[number] | before/at
harvest | Number of plants in the plot. | Number of plants were in the plot harvest time. Counting can occur earlier but if plot damage occurs before harvest the plot will need to be recounted. | | Green Snap
(optional) | count and date of causal event [MM/DD/YY] | before
flowering | Number of plants broken
between ground level and top
ear node before flowering. | Optional, cooperators may record
this if an event causes substantial
green snap | | Plot Weight | lbs
[number.decimal] | at harvest | Weight of harvested grain. | | | Test Weight | lbs/bu
[number.decimal] | at harvest | Grain density. | | | Grain Moisture | percent
[%] | at harvest | Percent moisture content of harvested grain. | | # **Anthesis** ## **Description/Procedure:** Taken as [MM/DD/YY] to 50 percent of a plot exhibiting anther exertion on greater than half of main tassel spike. Day of anthesis recording is shown in *Picture 1*, whereas the day after is shown *Picture 2*. **Timing:** At flowering **n** = 1 date per plot **Unit:** [MM/DD/YY] Picture 1 Picture 2 Image Credit: 2004, 2006; Purdue University, RL Nielsen # Silking ## **Description/Procedure:** Taken as [MM/DD/YY] to 50 percent of plot exhibiting silk emergence (*Picture 1*). Following day is shown in *Picture 2*. **Timing:** At Flowering **n** = 1 date per plot **Unit:** [MM/DD/YY] Picture 1 Picture 2 # Ear Height ## **Description/Procedure:** Placing measuring stick on ground next to the root crown, "ear height" is measured at the primary ear bearing node. In the figure, ear height is 90 cm. **Timing:** At plant maturity **n** = 1 representative plant per plot Unit: centimeter [cm] **Notes:** One plant is considered sufficient since these are inbreds and hybrids and are not segregating for traits. # Plant Height ## **Description/Procedure:** Placing measuring stick on ground next to the root crown, "plant height" is measured at the ligule of the flag leaf. In the figure, plant height is 165 cm. **Timing:** At plant maturity **n** = 1 representative plant per plot **Unit:** centimeter [cm] **Notes:** One plant is considered sufficient since these are inbreds and hybrids and are not segregating for traits. Please record date measured. # **Root Lodging** ### **Description/Procedure:** **Number of plants** that show root lodging per plot, i.e., those stems that lean substantially to one side ($\geq 15\%$ from vertical) (*Picture 2*). Count includes "goosenecked" plants that have "straightened up" after becoming lodged earlier in the season (*Picture 1*). **Timing:** Before Harvest **n** = 1 count per plot Unit: number of plants with RLD **Notes:** Emphasis is on the number of plants, not the %. Accurate stand counts and lodging counts are essential and will be used to calculate a % lodging in later analyses. Picture 1 Picture 2 # Stalk Lodging ### **Description/Procedure:** Number of plants broken between the ground level and the top ear node. **Timing:** Before Harvest **n** = 1 count per plot **Unit:** number of plants with SLD **Notes:** Emphasis is on the number of plants, not the %. Accurate stand counts and lodging counts are essential and will be used to calculate a % lodging in later analyses. Image credit: Gordon Johnson, UDel Extension # Green Snap (optional) ### **Description/Procedure:** Number of plants broken between the ground level and the top ear node **before flowering.** **Timing:** Before flowering **n** = 1 count per plot Unit: number of plants with GSP and date of triggering event [MM/DD/YY] **Notes:** Collaborators may choose to take counts of green snap following a weather event occurring before flowering that causes substantial numbers of stalks to snap. Please also record date of event. Image credit: UGA Cooperative Extension # Stand Count ### **Description/Procedure:** Number of plants per plot at harvest. **Timing:** at harvest **n** = 1 count per plot. Unit: count **Notes:** Main consideration is how many plants were in the plot at harvest time. Accurate stand counts and lodging counts are essential and will be used to calculate a % lodging in later analyses. Counting can occur earlier but if a plot damage occurs before harvest they will need to be recounted. # Plot Weight ### **Description/Procedure:** Shelled grain weight per plot **Timing:** At Harvest **n** = 1 weight per plot **Unit:** lbs # Test Weight ### **Description/Procedure:** Shelled grain weight per bushel **Timing:** At Harvest **n =** 1 weight per plot Unit: lbs/bu # Grain Moisture ### **Description/Procedure:** Water content in grain at harvest. Timing: At Harvest n = 1 measure per plot Unit: percent [%] ## **Appendix B: Soil Sampling Handbook** - a. Soil Sampling Instructions for GxE 2024 - 1. Each sample should be made up of a minimum of **10 cores** to ensure accurate representation of the field, ideally 20 or more cores. Cores should be taken to a depth of 30cm. - 2. For uniform fields: When gathering soil cores to make a composite sample, collect cores in a uniform pattern over the whole trial area. - 3. For fields with known clines/variants: Sample in order to get an accurate representation of the majority of the field. If significant differences exist in areas of the field, sample areas separately, submit multiple, clearly labeled samples, and mark the area represented by each sample in the field map. - 4. Thoroughly mix the cores before placing approximately 2 cups in the sample bag. This can be a sample bag, or a regular Ziploc bag. - 5. Label the bag with PI name and experiment name. - 6. Complete a sample submittal form. - 7. Secure samples for shipping and send to: Ward Laboratories, Inc. 4007 Cherry Ave, PO Box 788 Kearney, Nebraska 68848-0788 (308) 234-2418 Fax (308) 234-1940 www.wardlab.com Use UW Madison Agronomy UPS Account: 55W1X6 ### 8. SOIL SAMPLES FROM REGULATED/FOREIGN AREAS (TX, GA, GE, ON, NC, SC): All samples need to be shipped in sturdy, leak proof containers which preclude spillage or pest escape in transit and while awaiting processing. Sealed tubes, vials or cans placed in sealed coolers or sturdy boxes are acceptable shipping containers. Use the account # above. All samples need to have a copy of the Soil Permit inside and affixed to the outside. For foreign soils, a copy of PPQ Form 330 goes on the outside of the box. This requirement applies to samples from TX, GA, NC, SC, Ontario and Germany. ## **Appendix C: Additional Weather Station Resources** ### For weather station issues, contact: Hardware Software/Technical David Ertl (dertl@iowacorn.org) Steven Kizorek (skizorek@specmeters.com) 515-225-9242 815-436-4440 (mention Iowa Corn), or 800-248-8873 and ask for Tech Support ### a. Annual Watchdog 2700 Pre-Season Tasks - i. Check that all sensors are reading correctly on LCD screen. See item (f) for specific instructions regarding the calibration/troubleshooting of individual instruments. - ii. Rearrange the external instruments to the following ports: - 1. Soil moisture Port A - 2. Soil temperature Port B - 3. Solar radiation Port C - 4. PAR sensor Port D - iii. Using the SpecWare software with the station connected, delete the data from the logger (Logger > WatchDog Manager > Advanced > Clear > OK) - iv. Using the SpecWare software with the station connected, turn off unused ports and verify instrument port location (Logger > WatchDog Manager > Properties > uncheck Enabled box for unused ports and correct Sensor/Units > OK) - v. Replace batteries 4 AA. - vi. Check for inhibitors or damage to the sensors: - 1. Waste in rain gauge - 2. Damaged sensor wires - 3. Damaged external parts - 4. Dirt on sensors - vii. Inspect fasteners and ensure all are tight. - viii. Check for moisture damage & corrosion. Inspect circuit board if there are signs of water damage or corrosion. ## b. WatchDog 2700 Field Setup Use the following checklist to complete setup of the weather station. Station Placement: | Place the weather station at the edge of GxE field trial on level ground so | 1. 1. | |---|--------------| | that there are no shadows from the corn or other obstructions hitting | V V | | the station, approximately 6 to 10 feet away from the corn if possible. | | | Drive the tapered end of the 7 ft post 1 ft into the ground | 126 | | Secure the tripod around the post | | | Secure the feet of the tripod | W W | | Secure the weather station on top of the tripod with the front facing south | | | Point the wind vane and anemometer away from the rest of the station | | | Use a compass to point the nose of the wind vane to North. Hit Display > Set | YY | | > Set North > Set > Set to calibrate. | | | Install rain bucket cover by bending legs of hardware cloth and | | | insertinginto bucket | | | Check the date and time | | | Set the logging interval to 30 minutes | | | Clearly mark weather station location for passing farm equipment | | | Soil Temperature Sensor and Cable Protector: | | | Use a small shovel to dig a trench that is 20 cm (~8 in) | 1 1 | | deep and 15-18 cm (6-7 in) wide. | \checkmark | | Insert the soil temperature sensor horizontally into the | Ĭ | | wall at the bottom of the trench. If the soil is too dense | | | make a small indentation (e.g. end of screwdriver) in the | 1 2 | | soil to get it started. Watch video for a demonstration. | \ / \ | | https://youtu.be/ZXpeI7ukEW8 | \ / \ | | Lightly tamp the soil around the sensor to ensure | V V | | complete contact | | | Feed the sensor cable through the shaft and rain head | | | of the red cable protector. (Red shaft in the figure) | γ \ | | Place the shaft vertically in the soil | | | Tamp the soil around the shaft to provide vertical | | | support (The pipe [not the sensor] can be deeper than | | | 20 cm (~8 in) in the soil) | AAAA | | Use the cable tie to fasten the cable protector to the | 1000 | | tripod leg, stick or rod with a cable tie | ~50 ft | | Use a cable tie to secure extra cable off of the ground | | | Plug the sensor lead into port "B" on the weather station | | | Replace and <i>lightly compact</i> the soil until the trench is 5 cm (\sim 2 in) deep | | | Soil Moisture Sensor and Cable Protector: | | | Place the soil moisture sensor into the blue end of the shaft with the remaining cal | ole pushed | | through the rain head. The shoulder of the sensor will rest on the cut face of the shaft. | - | the sensor does not align with the slit in the end of the shaft (blue shaft in the figure) | | Loosen the soil using a soil probe to make a hole to insert the prove. Refill the hole with loose soil. | |----|---| | | Push the sensor gently into the soil so the top of the sensor is even with the soil in the trench. DO | | | NOT push hard, the sensor is breakable!! Watch this video for a demonstration. | | | https://youtu.be/ZXpeI7ukEW8 | | | Tamp the remaining soil around the outside of the shaft to divert surface water and support the shaft | | | Use a cable tie to secure extra cable off the ground | | | Plug the sensor into port "A" on the weather station | | ·. | In-Field WatchDog 2700 Maintenance | | | Weather station checks should take place at each field visit. Note the date and time of station | | | check in metadata sheet to allow proper data cleaning. | | | Anemometer: | | | Clean dirt/debris from the wind cups | | | Check display values to ensure the sensor is still working (Display > Current > Current > Up Arrow) | | | Ensure the cups still spin freely | | | Wind vane: | | | Clean dirt/debris from the wind vane | | | Check display values to ensure the sensor is still working (Display > Current > Current > Up Arrow) | | | Rain bucket: | | | Remove debris from the top of the bucket, both on and beneath hardware cloth cover | | | Unscrew the top and lift lid | | | Remove dirt/debris from inside the bucket | | | Set the display to view rain values (Display > Current > Current > Up Arrow > Down Arrow) and | | | tip the bucket to ensure the sensor is still working | | | Replace the lid and cover for rain bucket | | | Solar radiation sensor: | | | Remove dirt/debris from the solar radiation sensor | | | Check display values to ensure the sensor is still working properly (Display > Current > Current > Up | | | Arrow (x8 for Port C)) | | | Soil temperature sensor: | | | $\underline{\hspace{1cm}} Check display values to ensure the sensor is still working properly (Display > Current > Upsupple of the content content$ | | | Arrow (x7 for Port A)) | | | Soil moisture sensor: | | | Check display values to ensure the sensor is still working properly (Display > Current > Up | | | Arrow (x6 for Port A)) | | | All cables: | | | Check all sensor cables for exposed wires/breakages | | | oncertain sensor casies for exposed wires, breakages | ## d. Post-Field Season WatchDog 2700 Removal After the field is harvested, the weather station should be carefully removed to increase longevity. | _ Unplug the soil temperature and soil moisture sensors from the weather station | |---| |
Remove the soil temperature and soil moisture sensors by carefully digging them out with a shove | |
_ Replace the soil for the trench | |
_ Clean soil from the cable protectors and fold up sensor cables taking care to avoid sharp bends | |
_ Take down the weather station | |
Remove the 7 ft post from the soil and remove packed soil from the end | ### Transferring SWD files / data To transfer files, i.e., to consolidate data from multiple locations and computers, you can download your WatchDog weather station data and upload it to your folder by doing the following: - i. Connect the weather station to the computer and open SpecWare to transfer data - ii. Select Logger > Get WatchDog 1000/2000 Data - iii. Navigate to your SpecWare folder on the C-drive - iv. Open the folder for the desired station - v. Select all .SWD files and upload to the Weather folder using the location-specific Google Sheet link that was shared ### e. Additional Links to Resources: - 1. Software Setup: SpecWare9 Quick Start Guide - 2. Complete Watchdog Weather Station Manual - 3. Additional Spectrum Technology manuals ### f. WatchDog Troubleshooting and Calibration Methods To test the weather station, press the "Display" button to turn on the display. Press the "Current/Archive" button until the display reads "Current Values". Then use the arrow keys to step through the various instrument readings and test the output. Please wait up to 30 seconds for the display to update the current conditions. ### i. Anemometer: - 1. If wind speed constantly or intermittently reads zero - a. Ensure the anemometer is fully plugged in - b. Check for broken wires along the cable especially where the cable is secured - 2. If anemometer (wind cups) does not spin freely - a. Use a 0.05" allen wrench (should have been included with station) to loosen screw and drop the cups slightly (approx. 1/16") - b. Check wind speed output to determine if it is reasonable. If the speed seems too fast, tighten the screw. If the speed seems too slow, loosen the screw. #### ii. Wind vane: - 1. If the wind direction does not update after the wind vane is moved - a. Ensure the wind vane is fully plugged in - b. Check for broken wires along the cable especially where the cable is secured - 2. If the wind direction on display does not match true direction - a. Using a compass (or smart phone app) point the nose of the wind vane to the north - b. Turn on the weather station display by pressing the "Display" button - c. Hit the "Set" button - d. Use the arrows until the display reads "Set North" then push "Set" - e. Point the nose of the wind vane to north and press "Set" again. The weather station will calibrate north and return to the "Current" display #### iii. Rain bucket: - 1. If the rain bucket is not collecting data when the bucket is tipped - a. Loosen 4 screws at base of rain bucket twist the black bucket to the right about $\frac{1}{2}$ ", and lift lid - b. Remove dirt or debris that could be preventing the bucket from tipping - c. Manually move the bucket back and forth several times. Each tip is one one-hundredth of an inch (or 0.254 millimeters). - d. Check the display to determine if the proper amount of rain was recorded - 2. If the LCD is not showing any or all of the manual tips of the spoon - a. The magnetic sensor on the tipping spoon may be too far from the read switch or the sensor cable is bad. There are 2 cams on the base of the rain collector that can be rotated to move the tipping spoon closer to or further away from the read switch. Make this adjustment and check if the LCD shows that the logger can detect manual tips of the spoon. If so, proceed to step 3. If not, the sensor may need to be sent in for service. - 3. If all the tips are being counted - a. Replace the rain bucket and trickle a known amount of water into the bucket. CAUTION: The rain bucket is self-emptying so be sure there are no electronics/important papers near the station while completing this task. 84 ml of water should register 0.1 inches of water (2.5 mm). This is equivalent to 10 tips of the tipping spoon. The best results are attained when the water is added slowly. It is recommended that the water be put in a ziplock bag which is then punctured with a pin to allow the water to slowly enter the rain bucket. If the reading on the LCD is slightly high or slightly low, the sensor can be calibrated. When the spoon tips, it lands on screws on either side. If sensor is reading high, lower the screws. If it is reading low, raise the screws. It is recommended to adjust the screws a quarter turn and again run a known amount of water through the bucket to determine if additional adjustment is necessary. ### iv. Thermometer/Relative Humidity: - 1. If the temperature or humidity on the display seems unusually high/low - a. Ensure the sensor is fully plugged in - b. Check for broken or exposed wires along the cable ### v. Soil thermometer: - 1. If the soil thermometer display does not register or varies significantly from the air temperature - a. Ensure the units on the display match the intended units. If the units do not match use the "Set" button to set the sensor type. Use the arrow keys to select to appropriate port and hit "Set". Use the arrow keys again to select the correct sensor and hit "Set" again. - b. Ensure the cable is fully plugged in. - c. Check for broken or exposed wires along the cable. ### vi. Soil moisture sensor: - 1. If the sensor display reads anything other than 0% VWC in air - a. Ensure the sensor is fully plugged in - b. Check for broken or exposed wires along the cable - 2. If the sensor seems fine in air, but season data has issues - a. Place the sensor in distilled water. If the sensor does not read \sim 55% VWC it may need to be calibrated/replaced. #### vii. Solar radiation sensor: - 1. If the solar radiation sensor display reads zero - a. Ensure the sensor is fully plugged in - b. Check for broken or exposed wires along the cable - c. Ensure the units on the display match the intended units. If the units do not match use the "Set" button to set the sensor type. Use the arrow keys to select to appropriate port and hit "Set". Use the arrow keys again to select the correct sensor and hit "Set" again. - 2. If the solar radiation display reads a very low number (<500 W/m2) - a. Repeat steps a-c in item 1 above - b. If it is sunny take the weather station outside to see if the numbers improve. The solar constant is $1400 \, \text{W/m}^2$ so you shouldn't have any values greater than that.