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Core Ideas

•	 A deep learning model identified plant disease in 
UAV images with 95% accuracy.

•	 Transfer learning allowed for faster model 
optimization.

•	 This method detected plant disease symptoms at 
a very fine spatial scale.
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The detection, diagnosis and quantification of plant diseases using digital technolo-
gies is an important research frontier. New and accurate methods would be an asset 
to growers, for whom early disease detection can mean the difference between suc-
cessful intervention and massive losses, and plant breeders, who often must rely on 
time-consuming phenotyping by eye. We have developed such a method for detect-
ing an important maize (Zea mays L.) disease. Northern leaf blight [NLB; causal agent 
Setosphaeria turcica (Luttrell) Leonard & Suggs] is a foliar disease of maize that causes 
significant yield losses. Accurately measuring NLB infection is necessary both for breed-
ing more resistant maize lines and for guiding crop management decisions. Visual 
disease scoring in a large area is time-consuming and human evaluations are subjec-
tive and prone to error. In this work, we demonstrate an automated, high-throughput 
system for the detection of NLB in field images of maize plants. Through the use of an 
unmanned aerial vehicle (UAV) to acquire high resolution images, we trained a convo-
lutional neural network (CNN) model on lower resolution sub-images, achieving 95.1% 
accuracy on a separate test set of sub-images. The CNN model was used to create inter-
pretable heat maps of the original images, indicating the locations of putative lesions. 
Detecting lesions at a fine spatial scale allows for the potential of unprecedented high-
resolution disease detection for plant breeding and crop management strategies.

A trained plant pathologist can often diagnose disease with fairly high confidence 
by looking at an image of symptomatic tissue. Such visual diagnosis does not 
scale well, however; one person cannot efficiently evaluate every plant in a 

large area, even if each plant could be clearly photographed. Disease surveillance and 
related applications can benefit from robust computer vision models that detect or clas-
sify objects in images. Trained using machine learning, wherein models are iteratively 
trained and tested on large amounts of human-generated data, such models have already 
demonstrated their usefulness for detection and classification of numerous plant diseases 
(Singh et al., 2016).

Convolutional neural networks (CNNs) are a class of machine learning models 
that are currently state of the art in many computer vision tasks, including object clas-
sification and detection. Part of this success lies in the ability of a CNN to perform 
automated feature extraction, as opposed to classical methods that may require hand-
crafted features (LeCun et al., 2015; Schmidhuber 2015). In a sense, training a CNN to 
expert-level performance crystallizes some of a pathologist’s or crop scout’s diagnostic 
capabilities to be shared with any number of growers at any time or location.

A number of recent studies have successfully used machine learning approaches, 
particularly CNNs, to detect plant diseases in images that can be acquired without a spe-
cialized camera (standard red–green–blue or RGB photos). Many studies have relied on 
the expert-curated set of over 50,000 plant disease images released through PlantVillage 
(described by Hughes and Salathe, 2016; utilized by Mohanty et al., 2016; Islam et al., 
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2017; Wang et al., 2017; Barbedo 2018; Ferentinos, 2018; Too et 
al., 2019; Zhang et al., 2018). Due to its size and scope, this data-
set has become a benchmark for new approaches in plant disease 
detection, analogous to the large datasets such as COCO (Lin et 
al., 2014) or ImageNet (Deng et al., 2009) used for many other 
computer vision tasks.

While the PlantVillage dataset contains mostly images of 
detached plant tissues on uniform backgrounds, several groups 
have successfully used machine learning to detect disease from 
images taken in the field (Mwebaze and Owomugisha, 2016; 
DeChant et al., 2017; Lu et al., 2017). Such images present addi-
tional challenges, such as variations in the field of view, overlap 
between plants, and extraneous sources of dead tissue. On the 
other hand, field images can be taken quickly, without the need 
to detach or isolate the disease tissue in question. Even without 
detaching plant tissue, however, taking images by hand is still 
prohibitively time consuming for many downstream uses. To rap-
idly detect disease across a large area, a faster imaging platform is 
needed.

The low cost and widespread availability of small unmanned 
aerial vehicles (UAVs) have made them an attractive option for 
imaging plants in the field. To our knowledge, there are only 
four published systems that can identify plant disease symptoms 
from UAV images via CNNs (Ha et al., 2017; Sugiura et al., 2018; 
Kerkech et al., 2018) or other machine learning methods (Tetila et 
al., 2017). These systems were applied to various crops across spa-
tial scales, ranging from the entire plant (Ha et al., 2017; Sugiura et 
al., 2018) to regions of a plant (Kerkech et al., 2018) to individual 
leaves (Tetila et al., 2017).

Northern leaf blight (NLB) is a logical disease in which to 
attempt the challenge of fine-scale aerial identification, due to its 
conspicuous symptoms and economic importance. Northern leaf 
blight, also called northern corn leaf blight or NCLB, is a fungal 
foliar disease of maize that causes large, gray-brown necrotic lesions 
(Fig. 1). Identifying these lesions, often >1 cm wide and 5 cm long, 
in aerial images of maize plants is more tractable than it would be 
for diseases with smaller or more subtle symptoms. The economic 
impact of NLB also makes it an ideal target disease. Between 2012 
and 2015, estimated annual yield loss due to NLB in the United 
States and Ontario rose sevenfold to 14 million tonnes (Mueller et 
al., 2016), an economic loss of roughly US$1.9 billion, accounting 
for one fourth of all estimated yield losses from disease that year.

Northern leaf blight losses can be mitigated via two main 
strategies: breeding of maize lines with improved NLB resistance 
and chemical control via fungicides, both of which rely on accurate 
detection and quantification of symptoms. To breed NLB-resistant 
maize, plant breeders must quantify resistance in field trials. This 
is currently achieved by human experts visually estimating dis-
ease severity by eye late in the growing season, a method subject 
to high inter- and intra-rater variation (Poland and Nelson, 2011). 
Incubation period, the time between inoculation and the first vis-
ible lesion, can be measured before flowering, allowing breeders to 
select both male and female parents and ideally achieve twice as 

much genetic gain per unit time (Smith and Kinsey, 1993; Carson, 
1995). Measuring the incubation period is, however, very time con-
suming and not feasible for large trials.

Chemical control of NLB also relies on accurate detection and 
quantification. To decide whether or not to apply foliar fungicide, 
growers must estimate whether economic losses from NLB (and/
or other diseases) would exceed the costs of fungicide application. 
Extension guides suggest scouting for NLB symptoms when plants 
are flowering, the time at which diseases and other environmental 
factors are most likely to decrease yield (Robertston and Mueller, 
2007; Dewerff et al., 2019). Extensively scouting a large field of 
fully-grown maize plants is naturally quite difficult. Both breeding 
and management would be facilitated by methods that can rapidly 
detect and quantify NLB across a large area.

The major objective of this study was to demonstrate a proof-
of-concept for an automated phenotyping system that combines 
the deep learning approach of DeChant et al. (2017) with UAV-
based imagery to accurately identify maize disease symptoms by 
producing meaningful heat maps that predicted the presence of 
NLB lesions with high accuracy. To our knowledge, this is the 
first method capable of detecting diseased portions of plant leaves 
from UAV imagery.

�Materials and Methods
Plant Preparation

All images were taken in a 2017 field experiment planted at 
the Cornell University Musgrave Research Farm in Aurora, NY. 
The experiment contained two replicates of 250 maize hybrids, 
consisting of diverse genotypes from the Genomes to Fields 
Initiative (www.genomes2fields.org; AlKhalifah et al., 2018) 

Fig. 1. Representative image of northern leaf blight (NLB) symptoms.

www.genomes2fields.org
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and local checks chosen as representatives of hybrids commonly 
grown in central New York. Genotypes were arranged in two-row 
plots 5.64 m in length, with interrow spacing of 0.76 m and inter-
plant spacing of 15.7 cm. The rainfed field trial was treated with 
a nitrogen and broadleaf herbicide application regimen standard 
for Central New York. Maize plants were inoculated at the V5 to 
V6 stage with both 0.5 mL of liquid spore suspension and ?2 mL 
of sorghum [Sorghum bicolor (L.) Moench.] grains colonized by S. 
turcica for 3 to 4 wk prior (DeChant et al., 2017).

Dataset Description
The dataset contains images of both infected and uninfected 

leaves taken during 10 flights between 22 and 84 d post-inocula-
tion (Wiesner-Hanks et al., 2018). Images were collected using a 
Sony Alpha 6000 camera fitted with a Sony SEL55210 lens set to 
210-mm focal length. The camera was mounted to a DJI Matrice 
600 UAV flown at a speed of 1.5 m/s and 6 m above ground level. 
The UAV was programed to fly between waypoints set out in a 
serpentine fashion across the field, and the cameras built-in inter-
valometer was used to capture an image approximately once per 
second. There was no overlap between images. Flights were con-
ducted under lighting conditions from overcast to partial cloud 
cover to full sun, which often changed during the course of a single 
flight (Fig. 2). The images thus contain a mixture of direct and 
diffuse lighting.

For each image, we annotated the semi-major axis of each 
NLB lesion using a custom ImageJ macro (Wiesner-Hanks et 
al., 2018). Images were first filtered automatically by Canny edge 
detection to remove blurry images and then filtered out manu-
ally during annotation if they contained no maize leaves, were 
out of focus or blurry, or were otherwise unsatisfactory. A total 
of 6267 images are included in the dataset: 3741 with lesions and 
2526 without lesions. Most images contained at least two plants 
in part or in full, and images were not tied to genotypes or plots 
because they could not be geolocated with high enough precision. 

All images and annotations are available (Wiesner-Hanks and 
Brahimi, 2019).

Each set of images (infected or uninfected) was randomly 
divided into training, validation, and test sets at a ratio of 70:15:15. 
The test set was isolated from all aspects of model design, training, 
and hyperparameter tuning.

Model Architecture
The image analysis approach was based on the first two 

stages of the three-stage CNN pipeline developed by DeChant 
et al. (2017). Code for the model is available at https://github.
com/Columbia-Creative-Machines-Lab/crops. In the first stage, a 
CNN was trained to predict whether small subregions of an image 
contained lesions (Fig. 3). The second stage used this CNN as a 
sliding window across the whole image to generate a heat map. 
Unlike the prior study (DeChant et al., 2017) that used a manually 
designed architecture, we used a Resnet-34 model (He et al., 2016) 
pretrained on ImageNet (Russakovsky et al., 2015) to “transfer 
learn” rather than training from scratch. ImageNet contains no 
images of NLB lesions, but due to the immense variety of visual 
information contained in the dataset, models are able to learn basic 
visual structure that is useful for detection tasks (Goodfellow et 
al., 2016). This technique brought significant time savings and 
improved accuracy. To perform transfer learning, a linear layer 
of output dimension two was appended to the pretrained Resnet-
34 model, and all parameters of the model besides those of the 
new linear layer were fixed. The linear layer was trained for one 
epoch, and all remaining parameters were subsequently unfixed 
and trained jointly in later epochs.

A key distinction between hand-held images and UAV images 
lies in the altitude from which the pictures are taken. Whereas the 
individual lesions in hand-held images may occupy a large percent-
age of the pixels in an image, at heights of 6 m each lesion will be 
proportionally much smaller. When taking sub-images of 224 by 
224 pixels, we found it was impossible for human experts to tell 

Fig. 2. Four sample images from our data-
set that were collected by an unmanned 
aerial vehicle (UAV). The two images on the 
left were captured in August 2017; the right 
images are from September of the same 
year. Although the images in each column 
are visually similar, the top row contains no 
lesions while each image in the bottom row 
contains seven.

https://github.com/Columbia-Creative-Machines-Lab/crops
https://github.com/Columbia-Creative-Machines-Lab/crops
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whether the sub-image contained a lesion or not, because there was 
not enough “context” in the image. We thus modified the proce-
dure of DeChant et al. (2017) by taking 500 by 500 selections from 
each original image of 4000 by 6000, and labeling them according 
to whether the centermost 224 by 224 portion contained a lesion. 
The CNN was trained to classify the center portion but could use 
the surrounding image area as contextual information.

We added additional stochasticity with random flips, rota-
tions, and zooms, post-processing steps that serve as a form of data 
augmentation. Zoom augmentation introduces a random variable 
X sampled from a discrete uniform distribution [−50, 50]. Instead 
of 500 by 500, sub-images were taken with dimension (500 + X) 
by (500 + X). After applying other post-processing steps, the sub-
image was scaled back to 224 by 224 and added to the sub-image 
training set.

In Stage 2, we took a sliding window of 500 by 500 over the 
image, scaled it down to 224 by 224, and fed it into the trained 
Stage 1 CNN. The output of the Stage 1 CNN determined the 
strength of the region of the heat map. The step size for the sliding 
window was fixed at 40 pixels.

Experiments were performed on a Google Compute Engine 
instance with 16 GB of RAM and an NVidia P100 graphics 

processing unit, as well as a local machine with 16 GB of RAM 
and an NVidia 1080 GTX. To implement and execute experiments 
in Python, we used PyTorch (Paszke et al., 2017), a Python library 
that performs automatic differentiation over dynamic computa-
tion graphs; practically, this allows convenient training of arbitrary 
neural network architectures using backpropagation with gradient 
descent. Moreover, the PyTorch model zoo contains various models 
pretrained on the ImageNet (Russakovsky et al., 2015) dataset. 
We used a pretrained ResNet-34 architecture (He et al., 2016) as 
the backbone of the Stage 1 CNN. Initially, we treated the pre-
trained ResNet model as a feature extractor whose outputs were 
used as inputs to a simple linear classifier. To this end, we trained 
the model for one epoch, freezing all the weights but those of the 
final linear layer. All future epochs trained all parameters of the 
entire model, using the Adam variant of the stochastic gradient 
descent optimization algorithm (Kingma and Ba 2014) with a 
batch size of 80.

After training the CNN, we used it to generate heat maps 
on the original 4000 by 6000 images. We ran the CNN as a 224 
by 224 sliding window with a given step size over each image and 
applied the softmax function to the outputs, with the effect of nor-
malizing them so that they represented a probability distribution. 

Fig. 3. Outline of the two-stage pipeline for detection of northern leaf blight lesions using convolutional neural networks (CNNs). The first 
stage (top) involves training a CNN backbone using data augmentation. First, 500- by 500-pixel sub-images are randomly cropped from all 
the original training images, which generally show several plants in part or in full. Random transformations such as rotations and flips are 
performed on each sub-image. The transformed sub-images are divided into those containing lesions and those without lesions and used to 
train a ResNet-34 with a stochastic gradient descent. The second stage (bottom) is heat map generation. Using a sliding window approach, 
crops of the original image (e.g., as indicated with the small white square) are fed into the CNN. The output of the CNN is used as the pixel 
value for that position in the heat map. In this image, the final heat map represents lesions as black and non-lesioned areas as white. The 
three main black areas in the heat map overlap the lesions in the image.
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Collecting the component of the output corresponding to “with 
lesion,” we generated a heat map based on the matrix of these 
selected values. Each pixel of the heat map represents an associ-
ated portion of the original image—the intensity, or the strength 
of the softmax output, represents the model’s confidence in lesion 
presence.

�Results
We analyzed 6267 images of maize leaves, comprising 3741 

images containing NLB-infected leaves and 2526 images without 
lesions. On average, each image of infected leaves had 6.28 labeled 
lesions, totaling 25,508 lesions. Not all necrotic leaf tissue in the 
dataset was attributable to NLB; other causes included physical 
damage, natural lower leaf senescence, nitrogen deficiency, corn 
flea beetle feeding, and other foliar diseases such as northern corn 
leaf spot. Lesions present due to inoculation were comparable to 
those caused by natural infection in the non-inoculated batch, with 
similar color and shape.

Our next attempt, using our two stage CNN pipeline, was 
based on a sub-image generation process that output approximately 
4.5 sub-images per lesion. This training set was roughly balanced 
between positive and negative samples. We were able to achieve an 
accuracy of 97.76% (number of correct predictions divided by the 
number of total samples) on a hold-out test set of sub-images, as 
well as 98.42% precision (number of correct positive predictions 
divided by the total number of positive predictions), and 97.85% 
recall (number of correct positive predictions over the sum of true 
positives and false negatives).

The heat maps generated by this initial model still produced 
many false positives and negatives (Table 1). This indicated that 
the training set did not accurately represent the empirical distri-
bution and perhaps that the network was overfitting on the large 
numbers of sub-images for each lesion. We then reshuffled the 
data split, and changed the generation process such that only one 
image per lesion was emitted, together with many more negative 
samples (Table 2). This model had a lower accuracy of 95.1% 
(representative correct and incorrect classifications are shown in 
Fig. 4 and 5). However, it created much more interpretable heat 
maps (Fig. 6).

The first epoch was trained with all weights frozen except 
for the last, appended linear layer. The second epoch unfroze all 
the weights of the network; the fine-tuning that occurred during 
training allowed for a substantial increase in accuracy (Fig. 7).

While examining the heat maps produced on the test set, 
we realized that some of the mistakes made by the final model, 
especially false positives, were actually mis-annotated items in the 
dataset (Fig. 8a). Another category of misclassifications belonged 
to images different than those seen in training, such as images of 
senesced leaves, or different irregular viewpoints (Fig. 8b).

�Discussion
The disease detection system described here was able to detect 

disease symptoms from aerial images at a fine spatial scale with 
high accuracy. Existing models have detected and/or classified 
disease(s) in plant tissue at larger spatial scales, from individual 
leaves to entire plants. Direct comparisons between accuracies are 
confounded by many factors: the size, shape, and color of symp-
toms, the size and growth habit of the plant, which tissue is visibly 
infected, etc. As stated above, we selected NLB as a target disease 
because of its large, distinct symptoms, making it a more tenable 
target for accurate detection in images. With this caveat in mind, 
our system had accuracy comparable to or higher than previously 
described approaches. On the scale of whole plants, other systems 
were able to classify entire plants as virus infected or not with 93% 
accuracy in beet (Beta vulgaris L.; Ha et al., 2017) and 84% accu-
racy in potato (Solanum tuberosum L.; Sugiura et al., 2018). On 
the sub-plant scale, Kerkech et al. (2018) classified square patches 
of grape vines (Vitis vinifera L.) as diseased or not with 94 to 96% 
accuracy. Tetila et al. (2017) successfully implemented machine 
learning recognition at the finest spatial scale to date, diagnosing 
soybean [Glycine max (L.) Merr.] diseases on a leaf-by-leaf basis 
with peak accuracy of 98% when flying at an altitude of 1 to 2 m, 
comparable to that our initial model and higher than that of our 
final model. At similar altitudes, the two were comparable: our 
final model reached 95% accuracy from images taken at 6 m, while 
that of Tetila et al. (2017) reached 95% accuracy on images taken 
at 4 m and 85% on those taken at 8 m.

An advantage of the multistage pipeline was that it made full 
use of the high-resolution images. There was probably too much 
information in a full image for a single CNN to accurately predict 
the presence of lesions, especially considering the various natu-
rally occurring objects with similar color and shape. Indeed, our 
heat map method showed significantly improved performance 
compared with a baseline network trained on scaled-down whole 
images. When we scaled down such an image, it was difficult even 
for human experts to identify lesions. By training a CNN on full-
resolution fragments of these images, we could leverage both the 

Table 1. Confusion matrix for the final convolutional neural net-
work (CNN) model on a hold-out test set of sub-images. There 
were 675 misclassifications out of 13,732 sub-images. The num-
ber of false negatives was large, but in the heat map generation 
setting this was acceptable; the CNN had many opportunities to 
make the correct prediction when used as a sliding window.

Predicted positive Predicted negative

True positive 2798 585

True negative 90 10,259

Table 2. Statistics for a dataset of sub-images randomly gener-
ated from the original images. This dataset was used to train the 
final model.

Lesions Non-lesions

Training 17,324 56,528

Validation 3730 10,404

Test 3384 10,350



Page 6 of 9

power of CNNs and the large amount of information contained in 
the data. Breaking up images into pieces, as opposed to classifying 
entire images, was required partly due to hardware constraints; 
while the size of each image was around 8 MB, the parameters 
of the neural network (such as the weights of each convolutional 
filter) occupied the bulk of graphics processing unit memory 
during training.

Despite the differences between the NLB dataset and 
ImageNet (two classes instead of thousands, 6267 images 
rather than approximately 14 million), the low level features of 

the pretrained Resnet-34 transferred to the task successfully. 
Compared with the Stage 1 ensemble network (DeChant et al., 
2017), which made use of individual CNNs with accuracies as low 
as 81%, the transfer learned ResNet model achieved accuracies 
>90% in only two epochs, shaving significant amounts of training 
time compared with training on the dataset from scratch.

The system described allowed detection of the presence of a 
disease lesion in 500 × 500 image fragments, allowing heat maps to 
be generated for base images of arbitrary size. These heat maps can 
be used for many tasks, such as early detection or incubation period 

Fig. 5. Examples of test set images misclassified by our final trained model: false negatives (left); false positives (right).

Fig. 4. Examples of test set images classified correctly by our final trained model: true positives (left); true negatives (right).

Fig. 6. A comparison between the first con-
volutional neural network (CNN) model (left, 
trained with 1:1 lesion/non-lesion ratio) and 
the final CNN model (right, trained with 
a ratio of about 1:4). The original image 
is shown in the middle. In both cases, the 
initial model failed to detect many smaller 
lesions, while the final model was much 
more sensitive.



Page 7 of 9

evaluation; moreover, heat maps also create visual representations 
of disease severity, roughly quantifying the amount of disease 
damage. Using a UAV, data acquisition no longer has a large time 
cost; the limiting factor is having human experts label thousands of 
photographs. These annotations are, in a sense, a reusable resource, 
unlike time spent in the field evaluating disease by eye. Different 
groups can apply different machine learning methods or models 
to the same labeled training data to find the best approach for the 
task at hand. Annotated data from multiple years and locations 
can be combined to train a model for robust diagnosis or divided 
to train models that are specifically optimized for detecting disease 
symptoms under specific conditions: at a specific growth phase, in 
the presence of a particular abiotic stress, in cultivars with a certain 

plant architecture, etc. Much as we used a network pretrained on 
diverse images from ImageNet as a foundation for transfer learn-
ing, this model could be used as the basis for transfer learning for 
a new diagnostic task.

We used accuracy on the sub-image dataset as a proxy for 
performance but found that different sub-image generation 
processes could drastically change the quality of the final heat 
maps, even when accuracy itself was fairly high. For example, 
a network with >97% accuracy generated heat maps that were 
worse in terms of correspondence to lesion shape, size, and area 
than a network with 95% accurate predictions. While it was 
straightforward for humans to judge heat maps qualitatively, 
quantifying their performance was difficult, as the annotations 
used did not delineate lesion boundaries. Annotating images 
with polygons bounding entire lesions, rather than just lines, 
would be more time consuming but would ultimately allow  the 
accuracy of the produced heat maps to be quantitatively mea-
sured and models selected that can identify symptoms in a “true 
to size” fashion.

Whether this model can be successfully transferred to other 
contexts remains to be seen. Although the experimental trial in 
question contained phenotypically diverse lines, all images came 
from a single year in a single field. The model may perform differ-
ently when applied to maize lines with very different appearance 
or morphology, different planting densities, abiotic stresses like 
nutrient deficiency or drought stress, etc. Furthermore, all images 
were taken in an artificially-inoculated field trial, in which 
NLB predominated and other diseases were fairly rare. This was 
useful for limiting misclassifications, but it is unclear how the 
model would respond to diseases with similar symptoms, such 
as Stewart’s wilt or anthracnose leaf blight. Any potential user 
would presumably prefer a system that can distinguish between 
similar-looking diseases.

Fig. 8. (a) Two examples of the final model 
identifying errors in the dataset or “beating 
the experts,” with darker areas where the 
model believes there to be a lesion—these 
areas indeed contain lesions; and (b) two 
examples of out-of-distribution inputs for 
which the final model did not achieve accu-
rate performance, with darker areas where 
the model believes there to be a lesion: a 
mass of senesced leaves (left) and a picture of 
the field taken from a horizontal rather than 
vertical viewpoint (right).

Fig. 7. Learning curve for the first convolutional neural network 
(CNN) model. We took three different random seeds and plotted 
the average. The standard deviation is shown in gray. Note that 
the first epoch trained only the last linear layer of the pretrained 
CNN, with the remaining weights fixed. The subsequent epochs 
allowed fine-tuning of all the weights.
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The two potential groups of users for this technology are plant 
breeders and geneticists, who could use it for fast, accurate scoring 
of field trials, and growers, who could use it for crop scouting to 
make informed disease management decisions. As it stands, the 
technical limitations of the platform limit its utility for the former. 
To connect model output to an experimental unit (a plot, plant, or 
row), the images must either be stitched together to situate each 
within the entire field or georeferenced with very high accuracy. 
Stitching is not feasible for images taken at such high resolution, 
as hundreds of thousands would be needed to cover a field, and 
although the UAV platform was equipped with a real-time kine-
matic GPS system, we were not able to geo-reference each picture 
with the decimeter-level accuracy needed to assign it to a specific 
row in the experiment. Thus this system is most useful for detect-
ing disease at many points across large areas planted with a single 
cultivar, i.e., a grower’s field.

�Conclusions
Our model was able to identify individual disease lesions with 

high accuracy from aerial photographs taken in the field, setting a 
new benchmark for field-based disease detection. Transfer learning 
greatly simplified the model training process, making it a promis-
ing route for others who want to deploy similar systems in any 
of the hundreds of other economically important pathosystems. 
Adding contextual information to the training process allowed us 
to capture the benefits of high-resolution images while retaining 
information on where a putative lesion was situated on the plant 
as a whole, increasing overall accuracy.

Data Availability
Images and annotations are available at https://osf.io/p67rz/. Code for 
the model is available at https://github.com/Columbia-Creative-Ma-
chines-Lab/crops.
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