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1. Food source

2. Sequester 
atmospheric carbon 
and provide oxygen

3. Construction material 
for shelter

4. Energy

Human life relies on plants
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Assumption: If an observed root trait variation is linked 

to genes, than the trait is possible to breed
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Basic idea: Roots change their shape

Phenotype             =           G    +    GxE +    

E
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Suxing Liu

Measuring every root in the maize root 

system



3D root phenotyping pipeline for field grown maize



Real maize root vs. 3D root model3D root scanner

Recording high-resolution 3D point clouds



8 replicates per genotype

12 genotypes to validate measurements



Traits are measured as averages per genotype

Validation of four traits



Broad sense heritability of all traits 



Whole root descriptor distinguishes genotypes in 3D



We can measure a lot – but challenges remain

1. Number of crown root is currently not reliably counted
2. Crown root angles are too noisy to be useful
3. Number of whorls and distance between whorls sometimes unresolvable 

Increase point cloud density through
optimal positioning of cameras.
This means to find an approximation
for the art gallery problem (NP-hard)



Lots of new technology, but what does it help in 
future?

Limeng Xie



Can we discover unknown phenotypic pattern in big 
root data?

Limeng Xie



Tagging every 

plant 

with location

500-1000 times one genotype in a grid

3 genotypes (DOR 364 / L88 57 / SEQ 7)

2 environments water stress / non-limiting

How many root architectures?



What is this mess?

Analyzing D-curves as DS-curves

Fraction of excavation depth
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Shape curves describe the variation

Fraction of excavation depth
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Any visible differences between 

environments?



Shape curves describe the variation

Fraction of excavation depth
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1 genotype + 1 environment = many architectures
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Let’s do some math !

How can we group similar curves?
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Result: Number of architectures per data 

set

How to group similar curves?

K-needle
algorithm

K-means++
clustering

DS-curves 
From DIRT

Normalized knee plot Optimal k
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number of clusters
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1000 times 



What is an outliers for curves?

Modified Epigraph Index
(~ variation within the curve)
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Method modified from Arribas-Gil, Ana, and Juan Romo. 

"Shape outlier detection and visualization for functional data: the 

outliergram.” Biostatistics 15.4 (2014): 603-619.

Shape outliers: Curves not following the “obvious” trend of the cluster
Magnitude outliers: Curves that peak out of the “typical” bandwidth
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Stability 0.66 0.69 0.70 0.66 0.67

Stability 0.55 0.58 0.50 0.66 0.62

Phenotypic Spectrum of L88 57 (2015)

Water stress

Non-limiting

(n=828)

(n=439)



Stability 0.59 0.59 0.59 0.58 0.60

Stability 0.71 0.70 0.60 0.63 0.74

Phenotypic Spectrum of L88 57 (2016)

Water stress

Non-limiting

(n=304)

(n=328)



Consensus types across years & 

environment

Architecture Type 1 Architecture Type 2

Architecture Type 5 (2016) 

Architecture Type 4Architecture Type 3

Architecture Type 5 (2015)

Year 
difference



No difference in shoot biomass (2016/non-limiting)

No significant biomass difference 

between architecture types (ANOVA),

Except 2016ww_5-2016ww_3 p<0.05



No difference in shoot biomass (2016/water stress)

No significant biomass difference 

between architecture types (ANOVA)



Real time soil water content data in 3D

Volumetric water content regulated 
with 128 sensors to control 128 sprayers

6 inch deep

15 inch deep
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https://files.slack.com/files-pri/T6CTLKH3Q-FKRF9V3SP/image_from_ios.jpg
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Questions?

Natural History Museum, Mae Rim, TH


