

G X E 2018/19 Maize Project Proposal

ASTA G XE Organizational Meeting December 8th, 2016

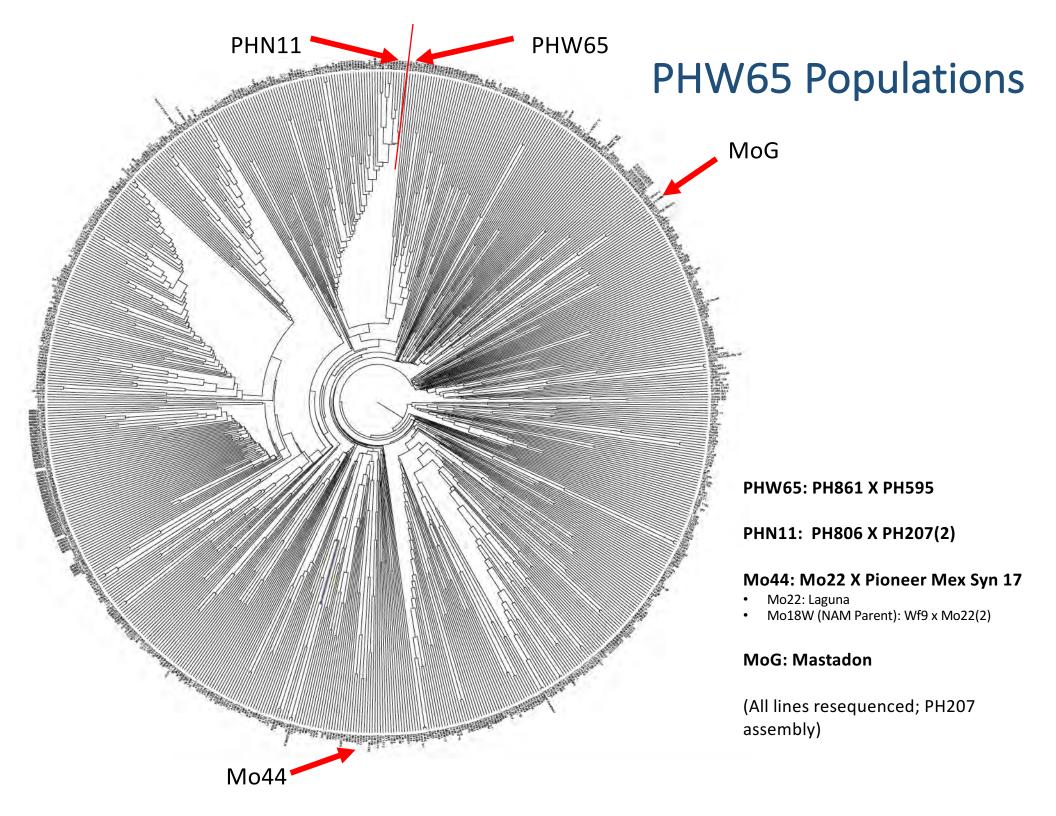
www.Genomes2Fields.org

Parameters:

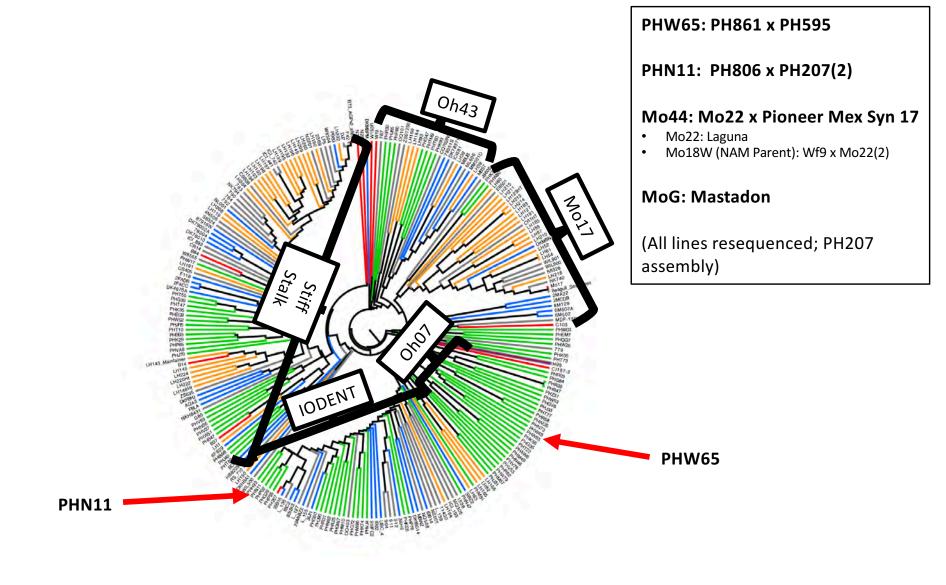
- ♦ Substrate for:
 - ♦ Phenotyping
 - ♦ Modeling/Genome Prediction
- Minimal barriers to sharing seed and data
- ♦ Use materials with a relatively narrow maturity window
 - ♦ Reduce impact of flowering time on results
 - ♦ More uniform data
 - ♦ Simplify plot management for collaborators
- ♦ Use same genetics across all locations
 - ♦ Division of 2016-17 experiments within G X E is not fully leveraging the breadth of environments
 - ♦ Utilize early testers to adapt to northern sites
- ♦ Experiment should be founded in hypotheses/concepts
 - ♦ Links to previous years is helpful
- Must be possible to produce large amounts of hybrid seed reliably

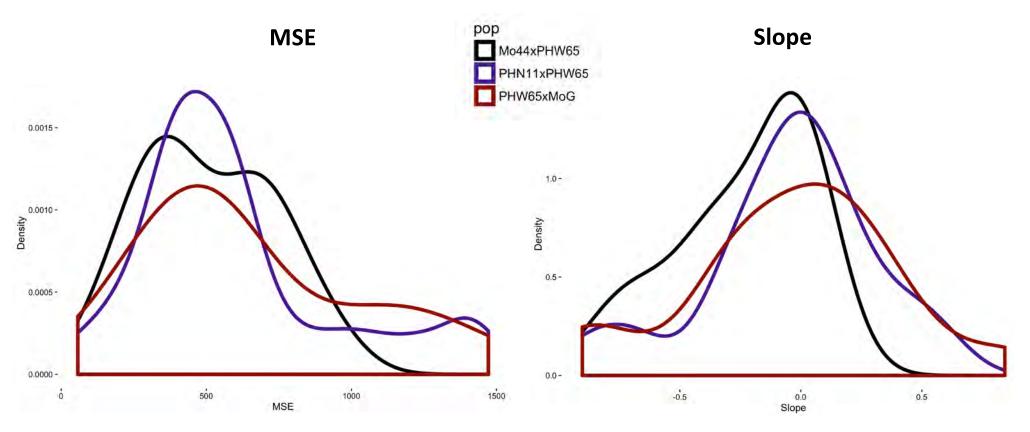
Proposal:

- ♦ PHW65 mini-NAM DH populations (400 plots/location)
 - ♦ Concepts:
 - ♦ Sample alleles for G X E from ex-PVP, old, and unselected pool
 - → Dissect Good G X E (mechanisms allowing specific adaptation) vs Bad G X E (poor performance in specific environments due to poor alleles such as disease susceptibility)

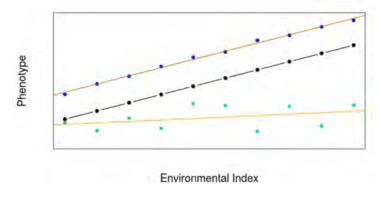

♦ Populations:

- ♦PHW65 X PHN11 (ex-PVP x ex-PVP) "Good" allele source
- ♦ PHW65 X Mo44 (ex-PVP x Old) "Bad" allele source
- ♦PHW65 X MoG (ex-PVP x Unselected) "Ugly" allele source
- ♦ Continue a component of the ex-PVP Design II hybrids or NIL component for additional years (~70 plots/location)
 - ♦ Accumulate G X Y data and link previous work to new locations
- ♦ Select Yellow Stripe hybrids (30 plots/location)
 - ♦ Accumulate G X Y data and link previous work to new locations
 - ♦ Minimize extremes in flowering


The Challenge with Extreme Flowering



PHW65 Populations – ex-PVPs Comparison:



2014/15 Summary – Hybrids Span Range of Slope and MSE Across Testers – Grain Yield:

♦ 6 to 8 location per hybrid

2016 Testcross Data: 313 lines by PHB47

	Yield (bu/A)		Moist (%)			
	AVE	MAX	MIN	AVE	MAX	MIN
PHN11 X PHW65	183.4	135.8	208.5	17.8	16.2	19.4
Mo44 X PHW65	177.7	134.6	204.0	18.1	16.1	19.6
PHW65 X MoG	166.1	134.6	193.6	17.8	16.1	19.3

Dissecting Slope and MSE across pops & testers:

Tester	Slope	MSE	No. of Env.
LH195	1.13	604	13
PB80	1.07	436	10
LH185	1.00	587	13
LH198	0.93	634	15
CG102	0.19	611	16

Proposed Experiment:

♦ Tester:

- ♦ LH195 (B37 X B73) Midwest to South
- ♦ 10 to 20% of hybrids replicated at each site.
 - ♦ Possibly those hybrids already included in the 2014 & 15 experiment to allow calculation of G X Y estimates
 - ♦ Same hybrids replicated across locations

♦ Design

- ♦ Randomizing hybrids from three groups allows direct comparison
- ♦ But, blocking by material will likely make a more uniform trial...

♦ Data

- ♦ Regular performance data
- ♦ Can we implement any uniform phenotyping among more sites with this?
- ♦ Continue set of common hybrids to maintain connections across years and increasing years of data on a subset of hybrids
- ♦ Analysis NAM QTL any details to highlight
 - ♦ Also, identify specific lines and extreme groups for further more detailed mechanistic analysis

